Studying Dark Matter with Cosmic Supercolliders

Maruša Bradač

DARSDROHMENBER

Nicholas Hall, Will Dawson, Annika Peter, Steve Allen, Douglas Clowe, Anthony Gonzalez, Maxim Markevitch, Bill Forman, Christine Jones, Tim Schrabback, Dennis Zaritsky, Richard Massey, Roger Blandford, Phil Marshall, Tommaso Treu, Anja von der Linden, Douglas Applegate

...the name of the royal baby....not to put pie charts in our talks...or use comic sans fonts...

ACDM: How well does it work

DM type	clustering	Halo mass functions	Growth function	Halo shapes	Halo density profiles	substructure
Cold, stable	On scales down to $< M_{\odot}$	Sharply falling function of mass	Linear regime scale independent	triaxial	Cuspy; p~r ⁻¹ at center	dN/dM ~M ⁻² down to M < M _☉
observations	Good fit down to ${\sim}10^{11}~{\rm M}_{\odot}$	Good from galaxies to clusters	Consistent so far, z < 0.7	Ellipticity observed	Some uncertainty	Good fit down to ~10^{11} $\rm M_{\odot}$

Talks by MR Lovell, CS Frenk Talks Wed AM

Another elephant = gastrophysics

© Anika Peter

LHC

Maruša Bradač

Looking at the elephant from many directions

Fermi, Early Universe

Galaxy formation

Maruša Bradač

Can we measure cross-sections directly?

Maruša Bradač

Galaxy cluster mergers to constrain DM

Ripples in the Cosmos, July 2013

Maruša Bradač

Galaxy cluster mergers to constrain DM

Ripples in the Cosmos, July 2013

Maruša Bradač

Galaxy cluster mergers to constrain DM

Ripples in the Cosmos, July 2013

Maruša Bradač

Galaxy cluster mergers to constrain DM

Ripples in the Cosmos, July 2013

Maruša Bradač

Galaxy cluster mergers to constrain DM

Ripples in the Cosmos, July 2013

Maruša Bradač

Galaxy cluster mergers to constrain DM

Ripples in the Cosmos, July 2013

Maruša Bradač

The Bullet Cluster 1E0657-56

Maruša Bradač

The Bullet Cluster 1E0657-56

Maruša Bradač

The Bullet Cluster 1E0657-56

- * One of the hottest and most luminous X-ray clusters known.
- Unique case of a major supersonic cluster merger occurring nearly in the plane of the sky (i < 15°, Markevitch et al. 2002).
- * Using the gas density jump at the shock we derived a shock Mach number of 3.2 ± 0.8, which corresponds to a shock velocity 4500 ± 1000 kms⁻¹
- * Subcluster velocity ~2700 kms⁻¹ (Springel & Farrar 2007) Ripples in the Cosmos, July 2013

Maruša Bradač

The Bullet Cluster 1E0657-56

Total Matter

Ripples in the Cosmos, July 2013

Clowe, MB et al. 2006

Maruša Bradač

The Bullet Cluster 1E0657-56

Total Matter

Ripples in the Cosmos, July 2013

Hall, MB et al. 2012

Maruša Bradač

DM self-interaction

Dark Matter – Gas Offset

© Will Dawson

Maruša Bradač

DM self-interaction

Δ Mass-to-Light Ratio

© Will Dawson

Dark Matter Properties

* Combining the Chandra data with lensing mass maps -> place an upper bound on the dark matter self-interaction cross section $\sigma/m < 1 \text{ cm}^2\text{g}^{-1} = 1.8\text{barn/GeV}$ (Markevitch et al. 2004).

-> Significant offset between subcluster X-ray gas core and dark matter peak gives σ/m < 10 cm^2g^{-1}

-> Survival of the subcluster dark matter peak during interaction gives σ/m < 3 cm^2g^{-1}

-> No loss of mass from subcluster during interaction gives σ/m < 0.8 cm^2g^{-1}

- * $\sigma/m < 0.7 \text{ cm}^2\text{g}^{-1} = 1.3\text{barn/GeV}$ (Randall et al.2008)
- * SI dark matter $\sigma/m < 0.5 5 cm^2 g^{-1}$ (Davé et al. 2001).

Previous Constraints

Reference	Constraint [cm ² /g	From	Problem
Yoshidal et. al 2000	σ/m < ~ 0.1	Cluster density core	One cluster
Dave et. al 200 I	$\sigma/m = 0.1 - 10$	Dwarfs density Cores	Narrow mass range
Gnedin & Ostriker 200 I	σ/m < 0.3	Subhalo evaporation	Overestimated subhalo evaporation
Miralda-Escude 2002	σ/m < 0.02	Halo shapes	Overestimated halo sphericity
Randall et al. 2008	σ/m < 0.7-1.25	Bullet Cluster	High central densities and relative vel.

Previous Constraints

Reference	Constraint [cm ² /g	From	Problem
Yoshidal et. al 2000	$\sigma/m < \sim 0.1$	Cluster density core	One cluster
Dave et. al 2001	$\sigma/m = 0.1-10$	Dwarfs density Cores	Narrow mass range
Gnedin & Ostriker 200 I	σ/m < 0.3	Subhalo evaporation	Overestimated subhalo evaporation
Peter et al. arXiv:1208.3026	σ/m < 1	Halo shapes	
Randall et al. 2008	σ/m < 0.7-1.25	Bullet Cluster	High central densities and relative vel.

DARK MATTER

Most of the universe can't even be bothered to interact with you.

S.Caroll

Maruša Bradač

Where do we go from here??

- * Need more merging clusters.
- * Need better simulations.

Maruša Bradač

Bullets are rare....

Maruša Bradač

A520 – Cosmic "Train Wreck"

Maruša Bradač

A520 – Cosmic "Train Wreck"

A520 – Cosmic "Train Wreck"

- * The galaxies originally in the dark core could have been ejected through a multiple-body interaction
- * Weakly self-interacting dark matter: requiring 3.8 ± 1.1 cm²g⁻¹ (Bullet cluster constraints $\sigma/m < 0.7$ cm²g⁻¹ = 1.3barn/GeV)
- * New HST data

Maruša Bradač

Weight Loss Program

Ripples in the Cosmos, July 2013

- * New multi color HST data
- No dark core at position #3 (lower M/L than Jee et al. 2012)
- * Twice the light, 60% the mass

Clowe et al. (MB) 2012

Maruša Bradač

ADVERT SURF'S Up: Spitzer UltRa Faint SUrvey

Ripples in the Cosmos, July 2013

Bullet Cluster with Spitzer

★ Sources responsible for reionization (z≥7):

→ Star formation rates and stellar masses of a large number of galaxies (50 at z_7 and 10 at z_8) → reconstructing the cosmic SFR and EOR

Maruša Bradač

ACS	orbits	ABmag	WFC3-IR	orbits	ABmag
F435W	18	28.8	F105W	24	28.9
F606W	10	28.8	F125W	12	28.6
F814W	42	29.1	F140W	10	28.6
			F160W	24	28.7

* 6 cluster strong lenses to UDF depth!

Cluster	Cycle	Z	RA	Dec
Abell 2744	21	0.308	00:14:21.2	-30:23:50.1
MACSJ0416.1-2403	21	0.396	04:16:08.9	-24:08:28.7
MACSJ0717.5+3745	22	0.545	07:17:34.0	+37:44:49.0
MACSJ1149.5+2223	22	0.543	11:49:36.3	+22:23:58.1
RXCJ2248.7-4431	23*	0.348	22:48:44.4	-44:31:48.5
Abell 370	23*	0.375	02:39:52.9	-01:34:36.5

*Cycle 23 observations are contingent on the results from preceding cycles.

Maruša Bradač

Baby Bullet* Cluster MACSJ0025-1222

Maruša Bradač

Baby Bullet* Cluster MACSJ0025-1222

Neither
 baby nor
 bullet

Bradač et al. 2008b

Ripples in the Cosmos, July 2013

Dark Matter Properties

* Combining the Chandra data with lensing mass maps -> place an upper bound on the dark matter self-interaction cross section $\sigma/m < 4 \text{ cm}^2\text{g}^{-1} = 8 \text{ barn/GeV}.$

-> Significant offset between subcluster X-ray gas core and dark matter peak σ

$$\overline{} = \Sigma \frac{\sigma}{m}$$

-> Survival of the subcluster (need velocity info)

-> No loss of mass from subcluster

* The Bullet Cluster: σ/m < 0.7 cm²g⁻¹ = 1.3barn/GeV (Randall et al.2008)

Maruša Bradač

Musket Ball Cluster: DLSCL J0916.2+2951

Dawson et al.(MB) 2012

Maruša Bradač

Musket Ball: DLSCL J0916.2+2951

- * Discovered from Deep Lens Survey
- * A merger at a later stage
- * $\sigma/m < 7 \text{ cm}^2 \text{g}^{-1} = 15 \text{ barn/GeV}$.
- ***** z=0.58

Dawson et al.(MB) 2012

* Will we ever do better?

 * σ/m < 0.05 cm²g⁻¹ will be effectively the same as CDM in terms of observables of structure (halo profiles, shapes, substructure fraction)

- * Merging Cluster Collaboration-MC²
- * UC Davis UC Irvine collaboration led by PI Dawson (jump started by HIPPAC)

Maruša Bradač

MERGING Cluster Collaboration

Observation

Will Dawson (PI, UCD) Marusa Bradac (UCD) James Jee (UCD) Julian Merten (Caltech/JPL) Dave Wittman (UCD) Reinout van Weeren (CfA)

Theory/Simulation

James Bullock (Co-founder, UCI) Marcus Bruggen (Hamburg/ Jacobs) Oliver Elbert (UCI) Manoj Kaplinghat (UCI) Annika Peter (UCI, OSU) Miguel Rocha (UCI)

Maruša Bradač

MC² Analysis Plan

Maruša Bradač

Maruša Bradač

Simulations: SI dark matter

$$\Gamma \sim
ho(rac{\sigma}{m})v_{
m rel}$$

- * Generic predictions when $\Gamma/H_0\gtrsim 1$
 - \rightarrow Rounder halo in inner parts.
 - \rightarrow Cored (less dense) halo density profiles.
 - \rightarrow Fewer satellites close to the center.

SI dark matter

DM type	clustering	Halo mass functions	Growth function	Halo shapes	Halo density profiles	substructure
Cold, stable	On scales down to <m<sub>⊙</m<sub>	Sharply falling function of mass	Linear regime scale independent	triaxial	Cuspy; ρ~r ⁻¹ at center	$dN/dM \sim M^{-2}$ down to M < M _{\odot}
observations	Good fit down to ${\sim}10^{11}~\text{M}_{\odot}$	Good for clusters	Consistent so far	Qualitative yes	Some uncertainty	Good fit down to ${\sim}10^{11}~\text{M}_{\odot}$
Self- interacting SIDM	Same as CDM	Same as CDM	Same as CDM	Less triaxial $\sigma/m=1cm^2/g$ in tension	σ/m=0.1-0.5 cm²/g?	Only modestly suppressed

Maruša Bradač

DM self-interaction: Measurement

NEED BETTER SIMULATIONS!!!

Dark Matter – Galaxy Offset

≠ 0

Maruša Bradač

Simulations

10 Mpc/h

 $\sigma/m = 1 \text{ cm}^2/\text{g}$

Maruša Bradač

Simulations

10 Mpc/h

DARK MATTER Most of the universe still can't be bothered to interact with you

S.Caroll