

SPT Galaxy Cluster Cosmological Constraints: First Results from Mass

Calibration with Velocity Dispersions

Ripples in the Cosmos - Durham - July 2013

Joseph Mohr, Sebastian Bocquet, Alex Saro, Jiayi Liu, Gurvan Bazin and Jonathan Ruel for the SPT Collaboration

Ludwig-Maximilians University Physics Department Max Plank Institute for Extraterrestrial Physics

SPT-SZE Survey

- 2500 deg² regions -40< δ <-65, 20hr< α <7hr
- Bolometer time stream: ~10⁶ T's/s over 4 years, ~65% efficiency
- Uniform depth: σ_{150} ~18 µK-amin, σ_{00} ~40µK-amin, σ_{220} ~60µK-amin
- Beam size: FWHM₁₅₀~1.0', FWHM₉₀~1.6', FWHM₂₂₀~0.7'

Dark Energy Survey **Imaging Underway!**

23. July 2013

Ripples in the Cosmos - Mohr

SPT Collaboration John Carlstrom, PI John Carlstrom Steve Padin Stephan Meyer Berkelev **Clem Pryke** Wavne Hu CASE WESTERN Andrey Kravtsov William Holzapfel John Ruhl **Brad Benson** Adrian Lee **Tom Montroy Clarence Chang** Martin White I MU Tom Crawford Sherry Cho Will High Huan Tran **Tom Plagge** Martin Lueker ันรท Jared Mehl Joe Mohr Colorado **Christian Reichart** Shantanu Desai Dan Schwan University of Colorado at Boulde Erik Shirokoff Alex Saro Nils Halverson Oliver Zahn **Robert Suhada** 🐯 McGill **Joerg Dietrich** mm Matt Dobbs

Helmuth Spieler

Jeff McMahon Jeeseon Song

Sebastian Bocquet Jiavi Liu

Alfredo Zenteno **I-Non Chiu**

Christina Hennig

CAERDY Peter Ade

Gil Holder

Jonathan Dudley

Keith Vanderline

for Cosmological Physics AT THE UNIVERSITY OF CHICAGO

Joaquin Vieira Abbie Crites **Rvan Keisler** Lindsev Bleem Jonathan Stricker

Erik Leitch

Llovd Knox **Jason Dick**

Antony Stark **Chris Stubbs Brian Stalder** Mark Brodwin Jonathan Ruel

SPT Galaxy Cluster Selection

- Clusters selected using matched filter technique (Melin et al 2006):
 - We filter an SPT map and extract all negative sources with S/N>4.5 (ξ >4.5)
- Contamination- unique "negative" SZE signature means contamination is due only to noise fluctuations
 - Easily calculated using Gaussian noise distribution and S/N threshold
 - Confirmed using optical followup of all cluster candidates over 750deg² (Song et al 2012)

SPT-only selection produces >95% pure sample at S/N>5 SPT+optical followup produces ~100% pure sample at S/N>4.5

Completeness

- SPT clusters are selected by S/N or ξ- therefore to do cosmology we must understand the E-mass relation
- We break it into two parts:
 - ζ-mass: amplitude, slope, z evolution, log-normal scatter

- Measurement noise then scatters ε about the true ζ (normal)
- We test selection model using mock observations

23. July 2013

Ripples in the Cosmos - Mohr

SPT Galaxy Cluster Cosmology

Ripples in the Cosmos - Mohr

- With pure sample and model for selection, we can test cosmology
- Phase I: Vanderlinde et al 2010
 - First 21 systems, 178 deg²
 - Mass calibration from simulations
- Phase II: Reichardt et al 2012
 - 100 systems (z>0.3, ξ>5), 720 deg²
 - Mass calibration from 15 Chandra Y_x's Andersson et al 2011
 - Y, masses based on hydrostatic masses measured at z~0.3

Mock Observations

- Cosmological Hydrodynamical Sims
 - Cooling, star formation, and winds (Springel & Hernquist 02)
 - Metals, stellar population, and chemical enrichment, SNIa, SNII, AGB (Tornatore et al. 03.06; Wiersma et al. 09)
 - BH and AGN feedback (Springel & Di Matteo 06; Fabjan et al. 10)
 - Low viscosity scheme (Dolag et al. 05)
- Y_{s7} lightcones from Magneticum serve as inputs to our mocks
- Use SPT beam/noise characteristics. observe light cone and extract clusters using same matched filter tool
 - Ongoing work by Jiavi Liu

23. July 2013

Ripples in the Cosmos - Mohr

Phase II Cosmology Constraints

Cosmological constraints:

- WMAP+SNe+BAO+H0 / • $\sigma_8 = 0.84 (0.04)$ / • w=-1.054 (0.073) /
- w/ SPT:
 - $\sigma_{\rm g} = 0.81 \ (0.03)$
 - w=-1.010 (0.058)

There is limited power in our dataset – we need more mass information. What can velocity dispersion mass information do for us?

23. July 2013

Velocity Dispersions as Mass

- Velocity dispersions reflect depth of the potential well
 - Expect high scatter due to merging
 - Rely on simulations for calibration- to characterize biases and scatter
- Observing program
 - Data acquisition continuing at Gemini, VLT and Magellan
 - ~60 dispersions acquired
 - Typical N_{gal}~25 (2 masks/cluster)
 - Use red sequence selection

23. July 2013

Ripples in the Cosmos - Mohr

Dispersion-M(ξ) Relation

- Dispersion-ξ relation shows high scatter, as expected
 - Scatter is 31% in σ about dotted line
 - Expectation is 27% (from Saro et al analysis)
- Solid line: expected mean relation assuming
 - Y_x based SPT masses
 - Saro et al dispersion-mass relation
- Dashed line: indicates that dispersion data will push SPT masses higher
 - Proper accounting of selection biases (Eddington bias) required

Ruel, Bazin et al 2013

Calibrating σ -mass with Sims

Dispersion-Mass Relations:

- 3D galaxies in cluster (~12%) Departures from equilibrium
- 1D galaxies in cluster (~40%) Anisotropy
- 1D color selected galaxies with velocity outlier rejection (~80%, depending on N_{spec} Interlopers
- Mock Observations
 - Model SPT dispersion program selection
 - Extract σ-mass relation as function of selection parameters
- Quantify imperfections in sims
 - Current results adopt 15% systematics floor in dispersion masses

Ripples in the Cosmos - Mohr

Calibrating ξ -mass with σ

- Selection effects can be accounted for in full likelihood analysis
- Mass calibration likelihood
 - For given choice of scaling relation params, for each cluster:
 - Use (ξ,z) to predict P(M|ξ, z)
 including selection effects like Eddington bias
 - Use $P(M|\xi, z)$ to predict $P(\sigma)$
 - Extract likelihood of consistency with observed $\boldsymbol{\sigma}$
 - ξ-mass rel'n params varied to find best fit

^{23.} July 2013

Cosmology Runs with Dispersions

Inputs:

- SPT sample: 100 clusters, ξ>5, z.0.3
- Mass information:
- 48 dispersions, 16 Y_x measurements
- Mass-observables and their treatment:
 - Power law, log-normal intrinsic scatter, obs noise
 - ξ-M: 4 params
 - σ-M: 5 params (Saro et al 2013)
 Y₂-M: 4 params (Vikhlinin et al 2006)
- Cluster Likelihood:
 - Single likelihood from Counts
 - Individual likelihoods for each mass constraint
- Cosmology:
 - 5 params for cluster only $(\Omega_m, \Omega_b, \sigma_8, n_s, H_0)$
 - 6 params with CMB ($\Omega_m h^2$, $\Omega_b h^2$, Δ_R^2 , τ , n_s , H_0)

23. July 2013

Ripples in the Cosmos - Mohr

23. July 2013

Consistency Test of GR

 Following Rapetti et al 2010, we introduce an additional free parameter γ to describe the linear growth of density perturbations:

where for GR y~0.55

- Within ΛCDM context with CMB+BAO +SNe+H₀ external datasets, we measure γ=0.74(0.27)
 - Significant γ -A_{sz} and γ -C_{sz} degeneracy

Bocquet et al 2013

New Results with Dispersions

• Dispersions change A_{sz} and B_{sz}, prefer higher $\Omega_{\text{m}}/\text{lower}~\sigma_{8}$

Run		A _{sz}	B _{sz}	C _{sz}	D _{sz}	Ω _m	σ_8
SPT + $\Omega_{\rm b}$ + H _o							
σ's		4.6(1.0)	1.6(0.12)	0.76(0.3)	0.22(0.12)	0.38(0.08)	0.74(0.05)
Y _x (B13)		5.3(1.0)	1.3(0.15)	0.90(0.3)	0.21(0.10)	0.29(0.08)	0.77(0.06)
SPT + WMAP + BAO + SNe + H_{o}							
σ's		3.8(0.6)	1.5(0.12)	0.37(0.2)	0.22(0.12)	0.28(0.01)	0.81(0.02)
Y _x (B13)		4.9(0.7)	1.4(0.15)	0.83(0.3)	0.21(0.09)	0.26(0.02)	0.80(0.02)

- Dispersions push the mass scale for a given SPT ξ up by +10%(+/-12%)
- CMB+BAO+SNe pushes mass scale up another +13% (+/-11%)
- Together, this ~23% increase in mass scale is a ~2 σ shift
 - Probing this tension requires improved mass calibration

23. July 2013

Summary

SPT-SZE clusters

High mass (M₂₀₀>4x10¹⁴M_o) sample extending to z=1.5

SPT Cluster Cosmology

- Currently our cosmology is dominated by the external data
 SPT clusters just shrink error bars a bit δw~0.05
- Going beyond this requires improved mass calibration

Dispersion Mass Calibration

- Masses no longer based on assumption that clusters are in equilibrium
- Dispersions push SPT masses up by 10% (20% with CMB++)
- SPT constraint on $\sigma_8(\Omega_m/0.27)^{0.3}=0.82$
 - No tension with Planck non-cluster result 0.86

Next Step: Include weak lensing information

23. July 2013

Ripples in the Cosmos - Mohr