Wide Angle Effects in Galaxy Surveys

JAIYUL YOO

INSTITUTE for THEORETICAL PHYSICS, UNIVERSITY of ZÜRICH LAWRENCE BERKELEY LABORATORY, UNIVERSITY of CALIFORNIA, BERKELEY Collaboration with Uros Seljak

Ripples in the Cosmos, Durham University, July 23, 2013

I. INTRODUCTION

Motivation

- recent advances in observation
 - larger sky coverage and higher redshift
 - measurements with higher statistical power

Euclid, MS-DESI, SKA, LSST

- recent advances in theory
 - general relativistic effect in galaxy clustering

Yoo et al. 2009, Yoo 2010, Bonvin & Durrer 2011, Challinor & Lewis 2011

Jeong, Schmidt, Hirata 2012, Yoo, Hamaus, Seljak, Zaldarriaga 2012

- motivation:
 - how accurate is *distant-observer approximation*?
 - is wide angle effect degenerate with modified gravity?

II. FORMALISM: HOW TO QUANTIFY THE DEVIATIONS?

Redshift-Space Distortion

- redshift-space vs real-space distances
 - distortion in observed redshift $1 + z = (1 + \overline{z})(1 + \delta z)$

$$s \equiv \int_0^z \frac{dz}{H} = r + \frac{1+z}{H} \delta z \simeq r + \mathcal{V} \qquad \qquad \mathcal{V} \equiv \frac{1+z}{H} \ V \simeq \frac{1+z}{H} \ \delta z_{\chi}$$

- conservation of galaxy number:
 - full Kaiser formula: $\delta_s = \delta_g \left(\frac{d}{dr} + \right)$

$$n_z(s) \ d^3s = n_r(r) \ d^3r$$
$$-\left(\frac{d}{dr} + \frac{\alpha}{r}\right)\mathcal{V}$$

• simple Kaiser formula: $\delta_s = \delta_g - \frac{dV}{dr}$ with *distant-observer approximation*

Wide Angle Effect

- What is "wide angle" effect?
 - deviation from the distant-observer approximation $\mu_1 = \hat{x}_1 \cdot \hat{k}$, $\mu_2 = \hat{x}_2 \cdot \hat{k}$, $\mu = \hat{x} \cdot \hat{k}$ vs $\hat{x}_1 = \hat{x}_2$
 - galaxies are far away from the observer: distant-observer approximation
 - velocity contribution:
 nothing to do with
 wide angle effect

Impact on Correlation

• **full Kaiser formula:**

$$\langle \delta_1 \delta_2 \rangle = \int \frac{d^3 k}{(2\pi)^3} \, e^{ik \cdot s} \left(b_1 + f_1 \mu_1^2 - i\mu_1 \frac{\mathcal{R}_1}{k/\mathcal{H}_1} \right) \left(b_2 + f_2 \mu_2^2 + i\mu_2 \frac{\mathcal{R}_2}{k/\mathcal{H}_2} \right) P_m(k)$$

• full Kaiser formula with distant-observer approx.

$$\left\langle \delta_1 \delta_2 \right\rangle = \int \frac{d^3 k}{(2\pi)^3} \ e^{ik \cdot s} \left(b + f\mu^2 - i\mu \frac{\mathcal{R}}{k/\mathcal{H}} \right) \left(b + f\mu^2 + i\mu \frac{\mathcal{R}}{k/\mathcal{H}} \right) P_m(k)$$

- simple Kaiser formula with distant-observer approx. $\langle \delta_1 \delta_2 \rangle = \int \frac{d^3k}{(2\pi)^3} e^{ik \cdot s} \left(b + f\mu^2 \right)^2 P_m(k)$
- R: velocity contribution

Szalay, Matsubara, Landy 1998 Szapudi 2004, Papai & Szapudi 2008

Covariance Matrix

- how to quantify the deviation?
 - easier in Fourier space:
 - $\operatorname{Cov}[P_{l}^{s}(k)P_{l'}^{s}(k')] = \frac{(2l+1)(2l'+1)}{2} \delta_{kk'} \int d\mu_{k} \ \mathcal{P}_{l}(\mu_{k})\mathcal{P}_{l'}(\mu_{k}) \left[P_{s}(k,\mu_{k}) + \frac{1}{\bar{n}_{g}}\right]^{2}$
 - redshift-space multipoles are *weakly correlated*, but *independent* at each wavenumber
- strategy:
 - compute the *full* correlation for each pair
 - average over *all triangles*, given (μ, s)
 - compare deviation with error bars

Full Kaiser Formula

- in light of the *general relativistic* formula: *two errors* in wide angle formula

 valid for galaxy sample: *independent* of luminosity *missing correction* for typical samples
 - derivative in Jacobian: *missing correction*
 - total derivative along the *past light cone*
 - spatial derivative: usual term
 - time derivative: additional velocity

Yoo & Seljak, in preparation

III. RESULTS

 deviation: velocity contribution, *"wide angle"*

 velocity contribution
 ~ V/r due to
 volume effect
 (r: distance to
 galaxies)

- number of pairs is ~ volume
- no wide-angle galaxy pairs

PDF of Triangular Configuration

- simple survey geometry (no hole, no disjoint region)
- typical pairs have *small opening angle!*
- non-uniform distribution of μ

- Euclid & BigBOSS
 more sky coverage: *more uniform* cosine distribution
- factor of few farther away: *smaller* opening angle

Systematic Errors in Correlation

- deviation of simple Kaiser formula with distantobserver approximation from the full redshift-space
- *negligible* on small scales
- *large* on large scales, but *difference* is $\Delta \xi \simeq 10^{-5}$

Systematic Errors

- error bars are in practice larger and correlated
- systematic errors in the SDSS measurements: *completely negligible!*

III. RESULTS

III. RESULTS

Caveats

- deviation in redshift-space correlation: *negligible!*
- power spectrum in practice:
 - distant-observer approximation: *accurate*!
 - differently measured! not just Fourier Transform
 - some issues are present! not wide angle effect
 - traditional FKP: simple Fourier transformation Feldman, Kaiser, Peacock 1994, Percival et al. 2001, 2007, 2010
 - spherical Fourier analysis: complicated, natural Heavens & Taylor 1995, Tegmark et al. 2004, 2006

FKP Method

traditional FKP method:

$$\langle P_l^s(k) \rangle = (-i)^l (2l+1) \int d^3 s_1 \int d\ln s \ s^3 j_l(ks)$$
$$\times \int d^2 \hat{s} \ \mathcal{P}_l(\hat{z} \cdot \hat{s}) \ \bar{n}_g^w(s_1) \ \bar{n}_g^w(s_2) \ \xi_s(s_1, s_1 - s)$$

- window function convolved power spectrum
- problems:
 - line-of-sight direction is *z-direction for all pairs*!
 - non-uniform distribution of μ : *unaccounted*!
 - pair-dependent method: $\mathcal{P}_l(\hat{z} \cdot \hat{s}) \rightarrow \mathcal{P}_l(\hat{n} \cdot \hat{s})$

Yamamoto et al. 2006

SDSS Power Spectrum

- FKP monopole: good!, FKP quadrupole: bad! FKP hexadecapole: awful!
- non-uniform distribution: negligible error!
- line-of-sight dependent pair-weighting: work well!

- even FKP monopole becomes *problematic!*
- non-uniform distribution: non-negligible error!
- line-of-sight dependent pair-weighting: work well!

IV. TAKE-HOME MESSAGE: HOW TO INTERPRET THE RESULTS?

Take Home Message

- distant-observer approximation: *accurate!*
 - galaxies are sufficiently far away
 - no degeneracy with modified gravity
- power spectrum measurements: *ok for now!*
 - monopole is ok, but higher multipole not
 - further refinement is needed for Euclid, BigBOSS
- wide angle formalism: *simple and accurate!*
 - no harm to use it
 - one can be creative in designing surveys

Wide Angle Effects in Galaxy Surveys

JAIYUL YOO

INSTITUTE for THEORETICAL PHYSICS, UNIVERSITY of ZÜRICH LAWRENCE BERKELEY LABORATORY, UNIVERSITY of CALIFORNIA, BERKELEY Collaboration with Uros Seljak

Ripples in the Cosmos, Durham University, July 23, 2013