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OUTLINE
 1 Models of galaxy formation 

 2 Angular mom. of infalling material and its effect in a SAM

 3 Results on galaxy sizes and stellar masses (low and high z)



Cosmological
periodic

comoving
boxes.

DM-only:
halos of 1e10Msun and up.

Our sim: 640^3 particles

Millennium II:
2000^3 particles

MII 100xparticles per halo of 
equal mass

Gonzalez et al. 2009

1A) MODELS OF GALAXY FORMATION



Fix free parameters using a set of z=0 statistics:
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Springel et al. (2001), Lagos, Cora & Padilla (2008), Lagos, Padilla & Cora (2009), Tecce et al. (2010)

1B) SEMI-ANALYTIC MODEL



1C) MODELS PERFORMANCE AT HIGH-
General deficit of high-z massive galaxies

no dusty 
template 

BC models 

Dusty 
templates 

Somerville et al. 
without and with 
0.25dex errors. 

Includes z=2 
interlopers. 

NEWFIRM Medium Band Survey
Marchesini et al. (2010)



2) ANGULAR MOMENTUM
Sales et al. (2012) show that surviving discs (k_rot high) in 
GIMIC show good alignment of angular momentum of mass 
enclosed in given radius (m/m_tot) with total angular 
momentum at time of turn-around.

Missalignments by 
accretion of material

destroy the disc, and a 
new disc starts to form.

Discs are episodic.
Sales et al.
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Enough resolution:
Angular momentum is followed numerically

A halo needs to have at least 1000 particles for a reliable 
measurement of the three components of its angular 

momentum vector.

Low resolution (SAMs):
Directions of spins assigned using MC simulations

Lagos, Cora & Padilla (2008), Lagos, Padilla & Cora (2009), Tecce et al. (2010)

2) ANGULAR MOMENTUM IN SAMS



2) MILLENNIUM II ANALYSIS

Notice that change in direction is larger for mergers.

Cos(alpha_sep) as a function of fraction of accreted mass.

S. Contreras
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2) MILLENNIUM II ANALYSIS

Notice that change in direction is larger for mergers.

Cos(alpha_sep) as a function of fraction of accreted mass.

Convert into probability of alpha_sep for
a given accretion event.

Rdisc_new=Rdisc_old*Cos(apha_sep) (Stochastic) S. Contreras



SAM PARAMETERS FIXED WITH LF

Smooth 
growth

in disc size



SAM PARAMETERS FIXED WITH LF

With episodic
discs

SF efficiency
lowered to

reproduce LF
at z=0



2) EFFECT ON SF

Resulting
ratios between
specific angular

momenta
of disc to halo



Smooth 
growth

in disc size

2) EFFECT ON SF

Hopkins+06



With episodic
discs

Rdisk is smaller
Tdyn is smaller
SFR is higher

2) EFFECT ON SF

Hopkins+06



2) EFFECT ON SF
Number of disc 

instabilities

if lower than critical value
disc is unstable

r_disc is now subject to
changes due to accretion

which make epsilon very low



With episodic
discs:

50% global increase in
instabilities

2) EFFECT ON SF
Number of disc 

instabilities

if lower than critical value
disc is unstable

r_disc is now subject to
changes due to accretion

which make epsilon very low


