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•  Redshift-space distortions (RSD) an old tool in a new context: 
understanding the nature of cosmic acceleration  
 
•  Progress with the data: science and perspectives with early 50,000 
redshift from the VIPERS project with the ESO VLT 

•  Progress with the methods: modelling RSD in the precision cosmology era 
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“…the Force be with you” 

? 

Lambda (or dark energy) may not be the end of the story… 



Z=6 

Z=2 

Z=0 

Look at how linear density fluctuations grow in the expanding Universe 

(Image credit: 
V. Springel) 
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Growth produces motions: galaxy peculiar velocities 

Figure by K. Dolag 



2007/2008: the renaissance of Redshift-Space Distortions… 

 
 

Nature 451, 541 (2008)  
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 also Zhang et al., 
Phys. Rev. Lett. 99,  
141302 (2007), 
proposing combination 
of RSD and lensing 

1987 



RSD at z~1 in 2007: slightly more than a proof of concept, but… 

Nature 451, 541 (2008)  

Very first Euclid-spectroscopy 
(SPACE) forecast 



Waiting for Euclid: improving the z~1 data… 





•  ~100,000 redshifts, >40% sampling 

•  Density and volume comparable to 2dFGRS, but at 
z=[0.5-1] 

•  Cosmology driven, but with broader legacy return 
(environment, clusters, AGN, …) 

•  ~24 deg2 over W1 and W4 CFHTLS wide fields (~16 + 8) 

•  IAB<22.5, LR Red grism, 45 min exp. 

•  z>0.5 color-color pre-selection  

•  PSF + SED –based star-galaxy separation (AGN color 
recovery) 

•  288 VIMOS pointings 

•  440.5 VLT hours 

VIPERS goals and strategy 



Sample ~all galaxies in representative 
volume: ~100k : 

 

6dFGS     1m 

SDSS     2m 

2dFGRS  4m 

VIPERS   8m 

 

Complementary to dilute tracers over 
larger volumes (SDSS/BOSS LRGs), 
efficient statistically, but poorer at 
probing nonlinear structure 

z~0.05 

to 

z~1 
2dFGRS: 220,000 redshifts 



VIPERS Team 
•  MILANO OAB (Project Office): L. Guzzo, B. Granett, J. Bel, A. Iovino, A. 

Marchetti, S. Rota, U. Abbas (Turin) 
•  MILANO IASF (Data Reduction Centre): B. Garilli, M. Scodeggio, D. Bottini, A. 

Fritz, P. Franzetti, D. Maccagni, L. Paioro, M. Polletta 
•  BOLOGNA: M. Bolzonella, O. Cucciati, L. Moscardini, A. Cappi, Y. Davidzon, C. Di 

Porto, F. Marulli, D. Vergani, G. Zamorani, A. Zanichelli, E. Branchini (Rome), G. De 
Lucia (Trieste) 

•  EDINBURGH: J. Peacock, S. de la Torre, M. Wilson, L. Eardley   
•  GARCHING MPE: S. Phleps 
•  MARSEILLE: O. Le Fevre, C. Adami, V. Le Brun, L. Tasca, C. Marinoni, E. Jullo, C. 

Schimd 
•  PARIS (TERAPIX CFHTLS): H. McCracken, Y. Mellier, M. Volk, V. Scottez, J. 

Coupon (Taiwan), J. Blaizot (Lyon) 
•  PORTSMOUTH: W. Percival, R. Tojeiro, A. Burden, R. Nichol 
•  WARSAW/Poland: A. Pollo, J. Krywult (Kielce), K. Malek (Nagoya), O. Solarz 

(Nagoya) 



Starting point: CFHT Legacy Survey 5-band photometry 
over ~140 deg2 

CFHT Legacy Survey Areas 

4x2 deg2 8x2 deg2 



VIPERS Colour-Colour selection: isolating z>0.5 
galaxies with VVDS calibration 



(see http://vipers.inaf.it) 

VIMOS at the ESO Very Large Telescope 



VIPERS Public Data Release 1 (PDR-1) 

•  Data observed prior to Spring 2012: public release in September 2013 

• 193 VIMOS pointings, out of 288 (W4 virtually complete) 

•  12 March 2013: First science release: 6 papers 
•  Expected survey completion: 2014 - 2015 



Sky coverage: PDR-1 sample 

W1 W4 



Sky coverage: 15 July 2013 

W1 W4 



VIMOS footprint on the sky 



VIPERS Target Sampling Rate (Ntarget/Nparent) 

de la Torre et al. 2013; Guzzo et al. 2013 



VIPERS Success Rate (Nmeasured/Ntargeted) 

de la Torre et al. 2013; Guzzo et al. 2013 



Spectral review/measurement environment: VIPGI+EZ  



53,609 redshifts 

(~63% of total) 

PDR-1 redshift distribution  

(Guzzo et al. 2013) 



From Guzzo et al. 2013 (artwork by Ben Granett) 





De la Torre et al.  2013 

Redshift-space clustering and growth rate of 
structure from the VIPERS PDR-1 data 

The function hNgal(m|z,MB)i is shown in Fig. 13 for the di↵erent
values of x probed with VIPERS. We checked the consistency of
this parameterization and verify that the wp(rp) predicted by the
mocks and the that measured are good agreement for all probed
redshift and luminosity thresholds. This is shown in the accom-
panying paper (Marulli et al. 2013).

7. Redshift-space distortions

The main goal of VIPERS is to provide with the final sample
accurate measurements of the growth rate of structure in two
redshift bins between z = 0.5 and z = 1.2. The growth rate of
structure f can be measured from the anisotropies observed in
redshift space in the galaxy correlation function or power spec-
trum. Although this measurement is degenerate with galaxy bias,
the combination f�8 is measurable and still allows a fundamen-
tal test of modifications of gravity since it is a mixture of the
di↵erential and integral growth. In this Section, we present an
initial measurement of f�8 from the VIPERS first data release.

7.1. Method

With the first epoch VIPERS data we can reliably probe scales
below about 35 h�1 Mpc. The use of the smallest non-linear
scales, i.e. typically below 10 h�1 Mpc, is however di�cult be-
cause of the limitations of current redshift-space distortion mod-
els, which cannot describe the non-linear e↵ects that relate the
evolution of density and velocity perturbations. However, with
the recent developments in perturbation theory and non-linear
models for RSD (e.g. Taruya et al. 2010; Reid & White 2011;
Seljak & McDonald 2011), we can push our analysis well into
mildly non-linear scales and obtain unbiased measurements of
f�8 while considering minimum scales of 5� 10 h�1 Mpc (de la
Torre & Guzzo 2012).

With the VIPERS first data release, we perform an initial
redshift-space distortion analysis, considering a single redshift
interval of 0.7 < z < 1.2. We select all galaxies above the mag-
nitude limit of the survey in that interval. The e↵ective pair-
weighted mean redshift of the subsample is z = 0.8. The mea-
sured anisotropic correlation function ⇠(rp, ⇡) is shown in the
top panel of Fig. 14. We have used here a linear binning of
�rp = �⇡ = 1 h�1 Mpc. One can see in this figure the two main
redshift-space distortion e↵ects: the elongation along the line-
of-sight, or Finger-of-God e↵ect, which is due to galaxy ran-
dom motions within virialized objects and the squashing e↵ect
on large scales, or Kaiser e↵ect, which represents the coherent
large-scale motions of galaxies towards overdensities. The lat-
ter e↵ect is the one we are interested in since its amplitude is
directly related to the growth rate of pertubations. Compared to
the previous high-redshift studiy using the VVDS survey, this
signature is detected with impressive signal-to-noise, with the
flattening being apparent to rp > 30 h�1 Mpc.

The two-dimensional anisotropic correlation has been exten-
sively used in the literature to measure the growth-rate param-
eter. However, with the increasing size and statistical power
of redshift surveys, an alternative approach has grown in im-
portance: the use of the multipole moments of the anisotropic
correlation function. This approach has the main advantage of
reducing the number of observables, compressing the cosmolog-
ical information contained in the correlation function. In turn,
this eases the estimation of the covariance matrices associated
with the data. We adopt this methodology in this analysis and fit
for the two first non-null moments ⇠0(s) and ⇠2(s), where most
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Fig. 14. Anisotropic correlation function of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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VIPERS: f8(z=0.8) = 0.47±0.08 



Real space P(k) at z~0.7 from CFHTLS-Wide + VIPERS N(z) 

2) Deconvolved following 
Efstathiou & Moody 2001 

 

 

 

Complementary to recent Cl 
estimate at z~0.5 from SDSS 
LRGs (Thomas, Abdalla & 
Lahav 2011) 

1) Cl spectrum using Tegmark 
1997 quadratic estimator 

B. Granett, LG & VIPERS Team, 2012 
MNRAS, 421, 251 (arXiv 1112.0008) 
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Xia, Granett, Viel et al., MNRAS, arXiv 1203.5105: 
improved constraints on neutrino masses (see VIEL talk) 



Bel et al.,  2013, submitted 

Cosmology with the shape of the VIPERS P(k) at z~0.8 
(through counts in cells and the “clustering ratio”) 

Where: 
•  R=smoothing radius of galaxy field  
•  r=nR (n=3,4,5) i.e. correlated on 

larger scales 
•  Ratio has favourable propertites 

wrt to quasi-linear/mildly nonlinear 
effects on the P(k): most of the 
effects factor out 

•  Essentially a ratio of power in two 
different k bands 

 



Work in progress: VIPERS direct measurement of 
power spectrum 

•  Key is understanding and modelling the (tough) 
VIPERS window function. Promising results when 
convolving the theory: “observed” P(k) 
reconstructed to a few % for k=[0.01,0.8] 

 FKP method - 
W(k) Convolved  

 (Stefano Rota PhD project) 

Rota, Granett, LG et al., in prep. 



Clustering and RSD from VIPERS need 
attention to detail 

(de la Torre & Peacock 2012, de la Torre et al. 2013) 

"   Precision cosmology with redshift surveys 

 

"   (1) Realistic and (2) numerous mock galaxy samples are fundamental 

S. de la Torre et al.: Galaxy clustering and redshift-space distortions in VIPERS

Fig. 4. Variations of the target success rate (TS R) with quadrants. The TS R quantifies our ability of obtaining spectra from the potential
targets meeting the survey selection in the parent photometric sample. The quadrants filled in black correspond to failed observations where no
spectroscopy has been taken.

Fig. 5. Variations of the spectroscopic success rate (S S R) with quadrants. The S S R quantifies our ability of determining galaxy redshifts from
observed spectra. The quadrants filled in black correspond to failed observations where no spectroscopy has been taken.

VIPERS has a complex angular selection function which has
to be taken into account carefully when estimating the correla-
tion function. For this, we weight each galaxy by the survey
completeness weight, as well as each pair by the angular pair
weights described in the previous section (Eq. 3). The survey
completeness weights correspond to the inverse of the e↵ective
sampling rate ES R in each quadrant Q, defined as

w(Q) = ES R�1(Q) = (S S R(Q) ⇥ TS R(Q))�1. (5)

By applying these weights we e↵ectively up-weight galaxies in
the pair counts. It is important to note that here we keep the spa-
tial distribution of the random objects uniform across the survey
volume. We recall that survey completeness weights account for
the quadrant-to-quadrant variations of the survey completeness
described in Section 3.3 but do not correct for the internal quad-
rant incompleteness. For that we use the angular pair weights
wA(✓) which are applied to the GG pair counts. In principle the
ES R is also a function of redshift and galaxy type (see Davidzon
et al. 2013). But given the statistics of the sample it is impossible
to measure the additional dependence of this function on redshift
and galaxy properties. Therefore, we decided to only account for

its quadrant-to-quadrant variations. We discuss the accuracy of
this approximation in Section 5.

Additional biases can arise if the radial selection function
exhibits strong variations with redshift. The e↵ect is partic-
ularly significant for magnitude-limited catalogues covering a
large range of redshifts and in which the radial selection func-
tion rapidly drops at high redshift. In that case, the pair counts
is dominated by nearby, more numerous objects: distant objects,
although probing larger volumes, will have less weight. To ac-
count for this we use the minimum variance estimator of Davis
& Huchra (1982) for which the galaxy counts are essentially
weighted by the inverse of the volume probed by each galaxy.
This weighting scheme, usually referred as the J3 weighting, is
defined as (Hamilton 1993)

wJ3 (z, s) =
1

1 + n̄(z)4⇡J3(s)
, (6)

where z is the redshift of the object, s is the redshift-space pair
separation, n̄(r) the galaxy number density at z and J3(s) is de-
fined as

J3(s) =
Z s

0
s02⇠(s0)ds0. (7)
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Reconstructing the halo distribution below the resolution limit 3
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Figure 1. Comparison of the continuous density fields of original (left panels) and reconstructed haloes (right panels) in a slice of 500⇥250⇥15h�3
Mpc

3

from the Millennium simulation, for two cuts in halo mass corresponding to m < 10

11.5 h�1
M� (top panels) and m < 10

11 h�1
M� (bottom panels).

In the m < 10

11.5 h�1
M� case, the reconstruction used a grid of size G = 2.5h�1

Mpc, while in the m < 10

11 h�1
M� case, a grid of size

G = 1h�1
Mpc was used.

dark matter haloes have been identified from the dark matter par-
ticle distribution using a friends-of-friends algorithm and we use
only the haloes identified in the snapshots at z = 0.1. The min-
imum halo mass in the Millennium and MultiDark halo cata-
logues are respectively mlim = 10

10.5 h�1
M� and mlim =

10

11.5 h�1
M�.

We estimate the halo density field by measuring the halo den-
sity contrast defined as �h(r) = (N(r)�hNi)(hNi) where N(r)
and hNi are respectively the number of haloes in a cell centred
at position r and the mean number of haloes per cell. Given the
halo number density, the optimal choice of cell size falls between
2.5h�1 Mpc and 5h�1 Mpc, so to have a few haloes per cell on
average. We choose a grid size of G = 2.5h�1

Mpc and esti-
mate the halo density field using different methods: the grid-based
method with Nearest Grid Point (NGP) and Cloud-In-Cell (CIC)
assignment schemes and the Delaunay Tessellation (DT) method.
We choose haloes above a limit between 10

10 and 10

11.5 h�1
M�

and reconstruct the smaller haloes using the conditional mass func-
tion of Equation (5). In this test, we assumed for b(m) and n(m)

the forms calibrated on N-body simulations by Tinker et al. (2008)
and Tinker et al. (2010). The output of the reconstruction is illus-
trated in Fig. 1, which shows the spatial distribution of original and
reconstructed haloes in a thin slice of the Millennium simulation.

To test the accuracy of the method we perform the reconstruc-
tion on the MultiDark simulation, which gives us a better probe
of the large-scale halo clustering. We measure the halo bias in the
low-mass regime from the reconstructed halo catalogue. The halo
bias has been estimated by first measuring the halo power spec-
trum P (k) and then taking the square root of the ratio between the
halo power spectrum and that of mass. In this, we assumed the non-

linear mass power spectrum given by CosmicEmu (Lawrence et al.
2010).

The recovered halo biases in mass bins below the resolu-
tion limit are shown in Fig. 2, which compares the results of us-
ing different estimates of the halo density field as well as dif-
ferent biasing models. In this figure, the measured halo bias is
shown as a function of the wavenumber for the three mass bins:
10

10 < m < 10

10.5 h�1
M�, 1010.5 < m < 10

11 h�1
M�,

and 10

11 < m < 10

11.5 h�1
M�. We find that the DT method as

implemented in the DTFE code (Cautun & van de Weygaert 2011)
provides better results than the grid-based estimator with CIC and
NGP assignment schemes. The large-scale bias, expected to asymp-
tote to linear theory predictions, is in very good agreement with the
predictions of Tinker et al. (2010) in the case of DT, whereas for
the other methods the bias is clearly overestimated. This is partic-
ularly true in the case of NGP. The DT method better accounts for
local variations in number density, reducing the shot noise in the
reconstruction and giving a better sampling of the most extreme en-
vironments. In this exercise, we pushed the methods towards their
limits by considering a very small grid size of 2.5h�1

Mpc. How-
ever, if we increase the grid size to 5� 10h�1

Mpc, the recovered
halo biases come to agreement and we find that the three methods
converge to the same values.

The biasing scheme that enters in the conditional mass func-
tion has also some impact on the recovered halo clustering, in par-
ticular for small grid size density field reconstruction such as the
one considered here. We show in the bottom panel of Fig. 2 the
effect on the recovered halo bias when assuming a linear or power-
law bias model as describe in Section 2.2. In both cases we use the
halo density field reconstructed with the DT method. We find that

c� 2012 RAS, MNRAS 000, 1–5



STATISTICAL RECONSTRUCTION 
(WIENER FILTERING) Granett et 
al.,  in preparation 

Reconstructing the density field 

LOCAL DENSITY RECONSTRUCTION  (CLONING, 
ZADE PHOTO-Z ATTRACTOR, Cucciati, Branchini, Bel 
et al., in preparation 



(figure: Ben Granett) 

VIPERS: detailed LSS vs galaxy properties 

Color-density relation: Cucciati et al., in prep. 

 (U-B) rest frame  



RSD modelling 

Need to improve modelling to enter “precision RSD era”  

 EUCLID: 1-3% precision on  fσ8 

(also: Okumura & Jing, 2011) 

8 D. Bianchi, et al.
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Figure 5. The mean values of β averaged over 27 sub-cubes, as measured in each mass sample (open circles) estimated using the
“standard” linear-exponential model of Eq. (11). The dark- and light-green bands give respectively the 1σ and 3σ confidence intervals
around the mean. The measured values are compared to the expected values βt, computed using Eqs. (16-18). We also give the 1σ and
3σ theoretical uncertainty around βt, due to the uncertainty in the bias estimate ( brown and red bands, respectively).

depending on the linear assumption, from those introduced
by a limited recontruction of the underlying real-space cor-
relation function. In Appendix B we shall therefore discuss
separately the effects of deriving ξ(r) directly from the ob-
servations.

Despite the apparently very good fits (Fig. 4), we find a
systematic discrepancy between the measured and the true
value of β. The systematic error is maximum (≈ 10%) for
low-bias (i.e. low mass) halos and tends to decrease for larger
values (note that here with “low bias” we indicate galaxy-
sized halos with M ≈ 1012 h−1 M"). In particular for Mcut

between 7× 1012 and ≈ 1013 h−1 M" the expectation value
of the measurement is very close to the true value βt.

It is interesting, and somewhat surprising, that, al-
though massive halos are intrinsically sparser (and hence
disfavoured from a statistical point of view), the scatter of
β (i.e. the width of the green error corridor in Figure 5) does
not increase in absolute terms, showing little dependence on
the halo mass. Since the value of β is decreasing, however,
the relative error does have a dependence on the bias, as we
shall better discuss in § 5.

4.2 Is a pure Kaiser model preferable for

cluster-sized halos?

Groups and clusters would seem to be natural candidates
to trace large-scale motions based on a purely linear de-

scription, since they essentially trace very large scales and
most non-linear velocities are confined within their struc-
ture. Using clusters as test particles (i.e. ignoring their in-
ternal degrees of freedom) we are probing mostly linear, co-
herent motions. It makes sense therefore to repeat our mea-
surements using the linear model alone, without exponential
damping correction. The results are shown in Figure 6. The
relative error (lower panel) obtained in this case is in gen-
eral smaller than when the exponential damping is included.
Both models yield similar systematic error (central panel),
except for the small mass range where the exponential cor-
rection clearly has a beneficial effect. In the following we
briefly summarize how relative and systematic errors com-
bine. To do this we consider three different mass ranges ar-
bitrarily choosen.

(i) Small masses (Mcut ! 5× 1012 h−1M")
This range corresponds to halos hosting single L∗ galaxies.
Here the linear exponential model, which gives a smaller
systematic error, is still not able to recover the expected
value of β. However, any consideration about these “galactic
halos” may not be fully realistic since our halo catalogues
are lacking in sub-structure (see Section 4.4).

(ii) Intermediate masses

(5 × 1012 ! Mcut ! 2 × 1013 h−1 M")
This range corresponds to halos hosting very massive galax-
ies and groups. The systematic error is small compared to

© 0000 RAS, MNRAS 000, 1–19

(Bianchi, LG et al., 2012) 

6 Elisabetta Majerotto et al.
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Figure 2. Fisher matrix forecasts of the errors expected on the growth rate (dark-blue error bars), expressed through the bias-free
combination f(z

i

)�
8

(z
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), obtainable from the Euclid baseline redshift survey through the combination of amplitude and redshift-space
anisotropy of galaxy clustering. The light-blue error bars (shown with a slight o↵set in redshift for visualisation purposes) represent the
case of a galaxy density reduced by a factor of two with respect to that forecasted for the galaxies observed by Euclid (Geach et al.
2008). The solid black line represents the fiducial f �

8

, computed for the cosmology shown in Eq. (5). The dashed green line shows the
growth of a flat DGP model (calculated by numerical integration of the corresponding equation for f(z)). The red dotted line represents
f �

8

of a coupled models with coupling parameter �
c

= 0.2. All models are computed for ⌦
m0

= 0.271 and for the same �
8

(z
CMB

) as for
the fiducial model. In the same plot we also show measurements of f �

8

from past surveys (magenta error bars) and the recent Wiggle-z
survey (pink error bars), see explanation in the text.

survey reference paper z f�
8

VVDS F22 Guzzo et al. (2008) 0.77 0.49± 0.19
wide

2SLAQ Ross et al. (2007) 0.55 0.50± 0.07
galaxy

SDSS LRG Cabre & Gaztanaga (2009) 0.34 0.53± 0.07
Samushia et al. (2011) 0.25 0.35± 0.06
Samushia et al. (2011) 0.37 0.46± 0.04

2dFGRS Hawkins et al. (2003) 0.15 0.39± 0.08

WiggleZ Blake et al. (2011) 0.22 0.49± 0.07
0.41 0.45± 0.04
0.6 0.43± 0.04
0.78 0.78± 0.04

Table 2. Current measurements of f�
8

We notice that we reach accuracies between 1.3% and
4.4% in the measurement of f �

8

depending on the redshift
bin, where the highest precision is reached for redshifts z '
1.0.

5.1 Comparison to other surveys

Together with Euclid, other ongoing and future surveys will
constrain cosmology by measuring f�

8

. Here we compare the
relative errors on f�

8

obtained using di↵erent spectroscopic
galaxy redshift surveys. In particular, we consider the BOSS
survey5 (see Schlegel et al. 2009), the BigBOSS6 Emission
Line Galaxies (ELGs) and Luminous Red Galaxies (LRGs)7

Regarding the fiducial bias, we use the forecasts by Orsi
et al. (2009) for BigBOSS ELGs. We use b = 2G(0)/G(z)
(where G(z) is the standard linear growth rate) for BOSS
and BigBOSS LRGs (see Reid et al. (2010)). Table 3 sum-
marises the main characteristics of these surveys.

The results are shown in Fig. 3. We first notice that Eu-
clid (represented by dark-green circles) will obtain the most
precise measurements of growth, even in the pessimistic situ-
ation of detecting only half the galaxies (light-green circles).
In redshift coverage it will be perfectly complementary to
BOSS. The partial overlap with BigBOSS, whose ELG sam-
ple will reach similar errors up to z ⇠ 1.4, will allow for inter-
esting useful independent measurements and cross-checks.

5 http://cosmology.lbl.gov/BOSS/
6 http://bigboss.lbl.gov/
7 We thank the BigBOSS consortium for providing their latest
estimate of their expected galaxy densities, which we used in cre-
ating this plot.
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The function hNgal(m|z,MB)i is shown in Fig. 13 for the di↵erent
values of x probed with VIPERS. We checked the consistency of
this parameterization and verify that the wp(rp) predicted by the
mocks and the that measured are good agreement for all probed
redshift and luminosity thresholds. This is shown in the accom-
panying paper (Marulli et al. 2013).

7. Redshift-space distortions

The main goal of VIPERS is to provide with the final sample
accurate measurements of the growth rate of structure in two
redshift bins between z = 0.5 and z = 1.2. The growth rate of
structure f can be measured from the anisotropies observed in
redshift space in the galaxy correlation function or power spec-
trum. Although this measurement is degenerate with galaxy bias,
the combination f�8 is measurable and still allows a fundamen-
tal test of modifications of gravity since it is a mixture of the
di↵erential and integral growth. In this Section, we present an
initial measurement of f�8 from the VIPERS first data release.

7.1. Method

With the first epoch VIPERS data we can reliably probe scales
below about 35 h�1 Mpc. The use of the smallest non-linear
scales, i.e. typically below 10 h�1 Mpc, is however di�cult be-
cause of the limitations of current redshift-space distortion mod-
els, which cannot describe the non-linear e↵ects that relate the
evolution of density and velocity perturbations. However, with
the recent developments in perturbation theory and non-linear
models for RSD (e.g. Taruya et al. 2010; Reid & White 2011;
Seljak & McDonald 2011), we can push our analysis well into
mildly non-linear scales and obtain unbiased measurements of
f�8 while considering minimum scales of 5� 10 h�1 Mpc (de la
Torre & Guzzo 2012).

With the VIPERS first data release, we perform an initial
redshift-space distortion analysis, considering a single redshift
interval of 0.7 < z < 1.2. We select all galaxies above the mag-
nitude limit of the survey in that interval. The e↵ective pair-
weighted mean redshift of the subsample is z = 0.8. The mea-
sured anisotropic correlation function ⇠(rp, ⇡) is shown in the
top panel of Fig. 14. We have used here a linear binning of
�rp = �⇡ = 1 h�1 Mpc. One can see in this figure the two main
redshift-space distortion e↵ects: the elongation along the line-
of-sight, or Finger-of-God e↵ect, which is due to galaxy ran-
dom motions within virialized objects and the squashing e↵ect
on large scales, or Kaiser e↵ect, which represents the coherent
large-scale motions of galaxies towards overdensities. The lat-
ter e↵ect is the one we are interested in since its amplitude is
directly related to the growth rate of pertubations. Compared to
the previous high-redshift studiy using the VVDS survey, this
signature is detected with impressive signal-to-noise, with the
flattening being apparent to rp > 30 h�1 Mpc.

The two-dimensional anisotropic correlation has been exten-
sively used in the literature to measure the growth-rate param-
eter. However, with the increasing size and statistical power
of redshift surveys, an alternative approach has grown in im-
portance: the use of the multipole moments of the anisotropic
correlation function. This approach has the main advantage of
reducing the number of observables, compressing the cosmolog-
ical information contained in the correlation function. In turn,
this eases the estimation of the covariance matrices associated
with the data. We adopt this methodology in this analysis and fit
for the two first non-null moments ⇠0(s) and ⇠2(s), where most
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Fig. 14. Anisotropic correlation function of galaxies at 0.7 < z <
1.2. The top panel shows the results for the VIPERS first data release,
deduced by the Landy-Szalay estimator counting pairs in cells of side
1 h�1 Mpc. The lower two panels show the results of two simulations,
which span the 68% confidence range on the fitted value of the large-
scale flattening (see Section 7.4).
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Fig. 17. Monopole and quadrupole moments of the redshift-space
correlations, as a function of scale. The shallow curves show the results
for the 26 individual MultiDark simulation mocks; the points are for the
measured VIPERS data over the full redshift range, with assigned error
bars based on the scatter in the mocks. The solid and dotted lines corre-
spond to the best fitting models to the data for model B with Gaussian
or Lorentzian damping function respectively.

7.4. Results

We perform the redshift-space distortion analysis of the VIPERS
data in the context of a flat ⇤CDM cosmological model. Be-
fore considering the redshift-space distortions in the data, we
first test the methodology and expected errors on f�8 using the
mock samples. We fix the shape of the mass non-linear power
spectrum to that of the simulation (since the observed real-space
correlations are of high accuracy) and perform a likelihood anal-
ysis of each individual MD mock. In the case of model C we
also fix the normalisation of the power spectrum as discussed
above. The distribution of best-fitting f�8 gives us a direct esti-
mate of the probability distribution function of the parameter for
a given fitting method, and serves as a check on the errors from
the full likelihood function. We estimate the median and 68%
confidence region of the distribution. These are shown in figure
16 for the di↵erent models presented in the previous section and
for various minimum scales smin in the fit.

Model A is known to be the most biased model (e.g. Oku-
mura & Jing 2011; Bianchi et al. 2012; de la Torre & Guzzo
2012) and our results confirm these findings. We thus decide
not to describe in the following the detailed behaviour of this
model and focus on models B and C. We find that in general
model B tends to be less biased than model C, which is surpris-
ing at first sight as model C is the most advanced and supposed
to be the most accurate (Kwan et al. 2012; de la Torre & Guzzo
2012). This could be due to the quite restricted scales that we
consider and the limited validity of its implementation on scales
below s ' 10 h�1 Mpc as the maximum wavenumber to which
we can predict P�✓ and P✓✓ is about k = 0.3. We defer the anal-
ysis of this issue to the redshift-space distortion analysis of the
final sample and concentrate here on model B. The shape of the
damping function in the models also a↵ects the recovered f�8,
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Fig. 18. Marginalized likelihood distribution of f�8 in the data (solid
curve) and distribution (histogram) of fitted values of f�8 for the 26
individual MultiDark simulation mocks. These curves show a preferred
value and a dispersion in the data that is consistent at the 1� level with
the distribution over the mocks.

as expected given the minimum scales we consider, although in
the case of model B the change in f�8 is at most 5%. Includ-
ing smaller scales in the fit reduces the statistical error but at the
price of slightly larger systematic error. Therefore from this test
we decided to use model and a compromise value for the mini-
mum scale of smin = 6 h�1 Mpc.

With this preamble, we can finally compare with the corre-
sponding analysis of the real data. We assume a shape of the
mass power spectrum consistent with the cosmological parame-
ters obtained from WMAP9 (Hinshaw et al. 2012) and perform a
maximum likelihood analysis on the data. The best-fitting mod-
els are shown in Figure 17 when considering either a Gaussian
or a Lorentzian damping function. Although the mock samples
tend to slightly prefer models with Lorentzian damping as seen
in Fig. 16, we find that the Gaussian damping provides a much
better fit in the real data and we decided to quote the corre-
sponding f�8 as our final measurement. We measure a value of
f (0.8)�8(0.8) = 0.47±0.08 which is consistent with the General
Relativity prediction in a flat ⇤CDM Universe with cosmologi-
cal paramaters given by WMAP9, for which the expected value
is f (0.8)�8(0.8) = 0.45. The marginalised likelihood distribu-
tion of f�8 is shown superimposed on the mock results in Fig.
18. We see that the preferred values of the growth rate are con-
sistent with the mocks, in terms of the width of the likelihood
function being comparable to the scatter in mock fitted values.
To illustrate the degree of flattening of the anisotropic correla-
tion function induced by structure growth, we show in the mid-
dle and bottom panels of Fig. 14 ⇠(rp, ⇡) for two MD mocks
for which the measured f�8 roughly coincide with the 1� limits
around the best-fit f�8 value obtained in the data. We therefore
conclude that the initial VIPERS data prefer a growth rate that is
fully consistent with predictions based on standard gravity. Our
measurement of f�8 is also in good agreement with previous
measurements at lower redshifts as shown in Figure 19. In par-
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Figure 4. Top: relative systematic error on f for L > L⇤ galaxies at z = 1

in the case of models for which galaxy bias is assumed to be linear. The
light (dark) shaded band marks the 2% (5%) region around the fiducial
value. Bottom: corresponding 1� statistical errors on f .
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Figure 5. Same as Fig. 4 but at redshift z = 0.1. Note the very different
behaviour of all estimators with respect to the z = 1 case.

rate by 3 � 7% and 5 � 8% at z = 1 and z = 0.1 respectively.
Finally, we note that model A with exponential damping (A-
EXP) applied to scales rmin

? < 10h

�1

Mpc, which is one of the
most commonly used model in the literature, performs worst,
systematically underestimating f by up to 10% in agreement
with recent analysis (e.g. Bianchi et al. 2012).

These results are qualitatively consistent with the power
spectrum analysis of Kwan et al. (2012), who show that for
dark matter only at z = 0, z = 0.5 and z = 1, C-GAUSS1

is the least biased model when fitting up to k
max

= 0.1. Our
tests show however that for galaxies, model C-EXP is less biased
than C-GAUSS. In fact the choice of damping function has only a
significant impact on model’s ability to handle small scales, with
the difference diminishing with increasing rmin

? given the similar
asymptotic behaviour of the two functional forms. Conversely, we
note that the Gaussian damping produces in general slightly lower
statistical errors than the exponential damping. These tend also to
be about 15% smaller for models A and B than for model C.

It is important to note that for rmin

? < 10h

�1

Mpc, the
accuracy with which f is recovered tends to deteriorate for
all models. This may be associated with the increase of non-
linearities in the clustering. In this regime, the assumption of
linear biasing breaks down and it becomes crucial to account
for non-linearities to recover unbiased measurements of the
growth rate, as we will discuss in the next sections.

3.3 Effect of galaxy scale-dependent bias

We now let the galaxy bias vary with scale in the models and
study whether this can improve the recovery of the growth
rate parameter, in particular when including scales below
10h

�1

Mpc in the fitting. In general, the galaxy bias in config-
uration space can be defined as,

b(r) =

✓
⇠
gg

(r)

⇠
��

(r)

◆
1/2

= b
L

b
NL

(r) (26)

where ⇠
gg

is the galaxy real-space auto-correlation function and
b
NL

(r) is the non-linear scale-dependent part of the bias. It is im-
portant to stress that ⇠

gg

(r) is directly measurable from observa-
tions by deprojecting the observed projected correlation function
w(r?) (Saunders et al. 1992). This procedure allows one to cor-
rectly recover the shape of ⇠

gg

(r) up to about 30h�1

Mpc (e.g.
Saunders et al. 1992; Cabré & Gaztañaga 2009b) while it can
possibly introduce noise. In principle the latter can increase
the statistical error but may not introduce any systematic bias
in the recovery of f , although this has to be investigated in
more details in practical applications. In the following we will
therefore make the assumption that ⇠

gg

(r) is known and use the
measured real-space ⇠

gg

(r) from the simulated catalogues to infer
b
NL

(r) to be used in the models. In fact, it is not necessary to know
the exact shape of ⇠

gg

(r) on scales larger than about 20 � 30 h

�1

Mpc, where one generally finds the galaxy bias to be almost scale-
independent and can thus safely assume b

NL

(r) = 1. A notable
exception is that of more non-linear objects, for which the scale
dependence may extend to larger scales (see section 3.3.2).

Fig. 8 shows the non-linear scale-dependent component of
galaxy bias, b

NL

(r), for the different galaxy populations in our
simulated catalogues at the two reference redshifts considered,
z = 1 and z = 0.1. In the previous section we considered only
catalogues of galaxies with L > L⇤, while in this figure we in-
troduce more extreme galaxy populations, which we analyse in the
following section. To define b

NL

(r), the linear bias b
L

has been
determined for each galaxy population by minimising the differ-
ence between ⇠

gg

and b2
L

⇠
��

on scales above r = 10h

�1

Mpc.

1 This model is referred to as Taruya++ with empirical damping in Kwan
et al. (2012)

c� 2011 RAS, MNRAS 000, 1–16
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rate by 3 � 7% and 5 � 8% at z = 1 and z = 0.1 respectively.
Finally, we note that model A with exponential damping (A-
EXP) applied to scales rmin

? < 10h

�1

Mpc, which is one of the
most commonly used model in the literature, performs worst,
systematically underestimating f by up to 10% in agreement
with recent analysis (e.g. Bianchi et al. 2012).

These results are qualitatively consistent with the power
spectrum analysis of Kwan et al. (2012), who show that for
dark matter only at z = 0, z = 0.5 and z = 1, C-GAUSS1

is the least biased model when fitting up to k
max

= 0.1. Our
tests show however that for galaxies, model C-EXP is less biased
than C-GAUSS. In fact the choice of damping function has only a
significant impact on model’s ability to handle small scales, with
the difference diminishing with increasing rmin

? given the similar
asymptotic behaviour of the two functional forms. Conversely, we
note that the Gaussian damping produces in general slightly lower
statistical errors than the exponential damping. These tend also to
be about 15% smaller for models A and B than for model C.

It is important to note that for rmin

? < 10h

�1

Mpc, the
accuracy with which f is recovered tends to deteriorate for
all models. This may be associated with the increase of non-
linearities in the clustering. In this regime, the assumption of
linear biasing breaks down and it becomes crucial to account
for non-linearities to recover unbiased measurements of the
growth rate, as we will discuss in the next sections.

3.3 Effect of galaxy scale-dependent bias

We now let the galaxy bias vary with scale in the models and
study whether this can improve the recovery of the growth
rate parameter, in particular when including scales below
10h

�1

Mpc in the fitting. In general, the galaxy bias in config-
uration space can be defined as,

b(r) =
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(r)
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(r) (26)

where ⇠
gg

is the galaxy real-space auto-correlation function and
b
NL

(r) is the non-linear scale-dependent part of the bias. It is im-
portant to stress that ⇠

gg

(r) is directly measurable from observa-
tions by deprojecting the observed projected correlation function
w(r?) (Saunders et al. 1992). This procedure allows one to cor-
rectly recover the shape of ⇠

gg

(r) up to about 30h�1

Mpc (e.g.
Saunders et al. 1992; Cabré & Gaztañaga 2009b) while it can
possibly introduce noise. In principle the latter can increase
the statistical error but may not introduce any systematic bias
in the recovery of f , although this has to be investigated in
more details in practical applications. In the following we will
therefore make the assumption that ⇠

gg

(r) is known and use the
measured real-space ⇠

gg

(r) from the simulated catalogues to infer
b
NL

(r) to be used in the models. In fact, it is not necessary to know
the exact shape of ⇠

gg

(r) on scales larger than about 20 � 30 h

�1

Mpc, where one generally finds the galaxy bias to be almost scale-
independent and can thus safely assume b

NL

(r) = 1. A notable
exception is that of more non-linear objects, for which the scale
dependence may extend to larger scales (see section 3.3.2).

Fig. 8 shows the non-linear scale-dependent component of
galaxy bias, b

NL

(r), for the different galaxy populations in our
simulated catalogues at the two reference redshifts considered,
z = 1 and z = 0.1. In the previous section we considered only
catalogues of galaxies with L > L⇤, while in this figure we in-
troduce more extreme galaxy populations, which we analyse in the
following section. To define b

NL

(r), the linear bias b
L

has been
determined for each galaxy population by minimising the differ-
ence between ⇠

gg

and b2
L

⇠
��

on scales above r = 10h

�1

Mpc.

1 This model is referred to as Taruya++ with empirical damping in Kwan
et al. (2012)

c� 2011 RAS, MNRAS 000, 1–16

Taruya et al. 2010 model allows recovering f at the 5% percent level, Scoccimarro 2004 
and dispersion models performing worst (3-10%) 

(de la Torre & Guzzo 2012) 
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Survey z f(z)σ8(z) Reference

6dFGS 0.067 0.423 ± 0.055 Beutler et al. (2012)

LRG200 0.25 0.3512 ± 0.0583 Samushia et al. (2012)

0.37 0.4602 ± 0.0378

LRG60 0.25 0.3665 ± 0.0601

0.37 0.4031 ± 0.0586

BOSS 0.30 0.408 ± 0.0552 Tojeiro et al. (2012)
ρ=−0.19 0.60 0.433 ± 0.0662

WiggleZ 0.44 0.413 ± 0.080 Blake et al. (2012)
ρ=0.51 0.60 0.390 ± 0.063
ρ=0.56 0.73 0.437 ± 0.072

VIPERS 0.8 0.47 ± 0.08 de la Torre et al. (2013)

TABLE I: Compilation of recent published values of f(z)σ8(z)
(ordered by redshift). We indicate the correlation coefficient
ρ where the measurements are correlated in adjacent redshift
bins (the 1st and 3rd redshift bins in the WiggleZ survey are
uncorrelated).

sider only growth rate measurements with RSDs, with
published values of f(z)σ8(z), as summarised in Table I.
We consider the χ2 statistic, given by

χ2 = (x− x̄)C−1(x− x̄) (1)

where x is a vector of observed values, x̄ is a vector of
corresponding values from a model for x, and C is the
covariance matrix for the measurements.
In Tojeiro et al. (2012), the growth rate from the

BOSS survey was fitted at four correlated redshift values,
although the publicly available covariance matrix is for
three redshift measurements, to reduce correlations be-
tween the measurements. We find that even with three
redshift bins, the block-diagonal covariance matrix is too
highly correlated, and thus we do not include the highly
correlated intermediate redshift measurement. We anal-
yse the data with two different measurements from the
LRG survey, with a maximum correlation length of 200
h−1Mpc (LRG200) and also with a maximum correlation
length of 60 h−1Mpc (LRG60) – we do not analyse the
data with both LRG200 and LRG60 simultaneously. For
both data sets, we calculate conditional best fit param-
eters, and the corresponding χ2 for w, σ8, and γ, with
other parameters fixed. For comparison, we also fit the
measurements to a single, constant value of f(z)σ8(z)
that does not vary with redshift. The results are sum-
marised in table II.
We note that in fact the best fit to the data (in terms

of minimum χ2) is a single, constant value, that is, there
is no preference for a model with any change in the
growth rate. We find when varying w a best fit value
> −1, or when varying σ8 a best fit value less than the
Planck value of 0.834±0.027 (Planck Collaboration et al.
2013a). When varying γ, we find a best fit value higher
than expected in General Relativity. In Figure 1 we
plot the growth rate measurements from Table I, with
growth rate models for ΛCDM, and also for our best fit

Parameter ΛCDM, Planck Best fit χ2 PTE

w -1 -0.74 ± 0.07 2.70 0.952

σ8 0.834 ± 0.027 0.722 ± 0.038 2.91 0.940

γ 6

11
0.778 ± 0.16 3.18 0.923

Constant 0.415 ± 0.042 2.09 0.978

w -1 -0.78 ± 0.07 4.01 0.856

σ8 0.834 ± 0.027 0.741 ± 0.034 4.05 0.852

γ 6

11
0.740 ± 0.14 4.05 0.853

Constant 0.425 ± 0.038 3.71 0.883

TABLE II: χ2 and corresponding Probability To Exceed
(PTE) for the best fits to w, σ8, γ and also a single constant
value for the growth rate. We indicate the expected values
of w and γ in ΛCDM, and the measured value of σ8 from
Planck Collaboration et al. (2013a). The first set of results
is for the LRG60 data set, and the second set is for LRG200.
Both data sets have 8 degrees of freedom.
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FIG. 1: Comparing recent measurements of f(z)σ8(z) to mod-
els for a range of w. We are plotting results for the LRG60

data set. The measurement error bars are at the 1 standard
deviation uncertainty level. The dashed line is the expected
growth rate from ΛCDM with Planck parameters, and the
solid line is the best-fit growth rate for a variable w, with the
1 and 2 standard deviation uncertainty illustrated with the
shaded regions. We note that all the measurements include
our best fit model at the 1 standard deviation uncertainty
level, which is reflected in the low χ2 in Table II.

w = −0.74 ± 0.07 with the LRG60 data set. We note
that the PTE decreases with the LRG200 data set, since
the LRG200 measurements have a larger scatter than the
LRG60 measurements. This is likely due to the fact that
most of the coherent clustering signal is due to correla-
tions on scales less than 100 h−1Mpc, so the additional
correlations are effectively adding noise to the signal.
Although we find that at face value, the current growth

rate measurements appear to suggest w > −1 or a low
value of σ8, we also emphasise the low χ2 / ndof we find in

(Macaulay et al. 2013) 

As an aside, is there a real tension of current 
constraints on fσ8 with GR+Planck predictions?  

Planck w=-0.74 

Planck (fiducial) 

(de la Torre & VIPERS 2013) 

Planck 

WMAP 



Summary 

•  A promising future for galaxy redshift surveys : measure both w(z) and f(z) using BAOs/P(k) 
and z-distortions (plus clusters…)  test dark energy vs modified gravity 

•  A renaissance for redshift-space distortions: not considered in this context before 2008, now 
a key “dark energy probe” (EUCLID) 

1)   RSD: Improving the data 
2)  Over past 2 years new z-distortions results from WiggleZ, BOSS, designed for BAO 

•  VIPERS fills a specific niche, high sampling, will allows multi-population tracers approach 
•  Several projects at the horizon (W. Percival talk) 

•  EUCLID is approved and will couple a massive (slitless) redshift survey with a high-resolution 
imaging survey, to combine galaxy clustering and weak lensing (launch 2019) 

2) RSD: Improving the estimators 
•  Need further work, but rapid and promising development (e.g. u. Seljak talk) 

•  Several approaches (e.g. building upon Scoccimarro 2004) 
•  Streaming model approach yields promising results (Reid et al., Bianchi et al.) 

•  More accurate description of distribution function of velocities (Bianchi+): connect to theory 
on one side and data on another 



VIPERS PAPERS, March 2013 

1.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): An unprecedented view of galaxies and large-scale 
structure at 0.5 < z < 1.2, Guzzo, L., & VIPERS Team, 2013, A&A (arxiv.org/abs/1303.2623) 

2.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): an unprecedented view of galaxies and large-scale 
structure halfway back in the life of the Universe, Guzzo, L., & VIPERS Team, 2013, The ESO Messenger, 151, 39 

 
3.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): Galaxy clustering and redshift-space distortions at z ~ 

0.8 in the first data release, de la Torre, S., & VIPERS Team, 2013, A&A (arxiv.org/abs/1303.2622) 

4.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): Luminosity and stellar mass dependence of galaxy 
clustering at 0.5<z<1.1, Marulli, F., & VIPERS Team, 2013, A&A (arxiv.org/abs/1303.2633) 

5.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): Galaxy stellar mass functions at intermediate redshifts, 
Davidzon, I., & VIPERS Team, 2013, A&A (arxiv.org/abs/1303.3808) 

6.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): A Support Vector Machine classification of galaxies, stars 
and AGNs, Malek, K., & VIPERS Team, 2013, A&A, (arxiv.org/abs/1303.2621) 

7.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): spectral classification through Principal Component 
Analysis, Marchetti, A. et al. & VIPERS Team, 2013, MNRAS, 428, 1424 

8.  The power spectrum from the angular distribution of galaxies in the CFHTLS-Wide fields at redshift ~0.7, Granett, 
B. R.; Guzzo, L.; Coupon, J.; Arnouts, S.; Hudelot, P.; & VIPERS Team, 2012, MNRAS, 421, 251 

 
9.  Easylife: The Data Reduction and Survey Handling System for VIPERS, Garilli, B.; Paioro, L.; Scodeggio, M.; 

Franzetti, P.; Fumana, M.; Guzzo, L. 2012, PASP, 124, 1232 



More VIPERS PAPERS to come, June 2013 

1.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): Omega_m from the clustering ratio measured at 
z~1, Bel, J., & VIPERS Team, 2013, A&A, submitted 

 
2.  The VIMOS Public Extragalactic Redshift Survey (VIPERS): the unimportance of dry mergers in the 

formation of massive red sequence galaxies over the past 9 Gyr, Fritz, A., & VIPERS Team, 2013, A&A, 
submitted 

 
3.  PCA analysis of the full PDR-1 sample, Marchetti et al. 

4.  Morphological bulge-disk decomposition in VIPERS, Krywult et al. 

5.  A detailed view of the color-density relation at z=[0.5-1], Cucciati et al. 

6.  Density field… (Cucciati, Branchini, Bel) 

7.  Multiple population RSD (Granett, Rota, LG) 

8.  Power spectrum analysis and cosmological constraints (Rota, Granett, Bel, LG, …) 

9.  … 


