

Constraining modified gravity with redshift space distortions

Eva-Maria Mueller

Advisor: Rachel Bean

How do we interpret dark energy?

How can GR be modified?

• Assume conformal Newtonian gauge

$$ds^{2} = a^{2}[(1+2\psi)d\tau^{2} + (1-2\phi)d\vec{x}^{2}]$$

$$\phi, \psi \text{ - Newtonian potentials}$$

$$\tau \text{ - conformal time}$$

Modify Poisson equations

effects on matter growth

$$\nabla^2 \psi = 4\pi G a^2 \delta \rho \times G_{matter}$$

$$\nabla^2(\phi + \psi) = 8\pi G a^2 \delta \rho \times G_{light}$$

effects on lensing of light

Phenomenological model

However a number of well-studied modified gravity models can be expressed in terms of G_{matter} , G_{light}

complementary of photometric and spectroscopic surveys

1% level constraints on both parameters

However most models are z-dependent and k-dependent

Cornell University

Principle component analysis as an model independent approach:

 $G_{light}(k, z)$: 20 z bins, 4 k bins $G_{matter}(k, z)$: 20 z bins, 4 k bins w(z): 20 z bins

6 cosmological parameters + 180 extra parameters ! (2 x 20 x 4 + 20)

Survey complementarity

I. Less bins=more restrictive prior

2. Reduce the number of modes

How big is the bias?

$$bias = \sum_{i}^{N} (G_{M/L}(z_i) - G_{M/L}^{fid}(z_i))$$

reconstructed value using a subset

of all modes

Minimize the risk!

Huterer and Starkman '02

Alternative Approach

Dark energy (background) is often modeled as:

 $w(a) = w_0 + (1-a)w_a$

> Simple parametrization for modified gravity?

 $G_{matter}(k, a) = ?$ $G_{light}(k, a) = ?$

A variety of models considered in the literature

A bit of caution with forecasts!

Forecasting is sensitive to assumptions!

- Galaxy number densities n(z)
- Galaxy bias
- Minimum scale k=0.12h/Mpc
- •Smith et al nonlinear power spectrum
- Kaiser approximation
- photometric redshift errors
- intrinsic alignment modeling
- ...
- •

Summary

Phenomenological bridge between theory and observation: G_{matter} , G_{light}

Spectroscopic surveys are going to be the key to measuring ${\cal G}_{matter}$

Photometric weak lensing and galaxy surveys will enable strong measurements of G_{light}

Upcoming decade offers unprecedented opportunity to test gravity con cosmic scales

The more freedom allowed in the model the looser the constraints