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• Anisotropic BAO with clustering wedges

• Improving geometric results with the 

reconstruction of the baryonic acoustic feature
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the SDSS-III BOSS

Apache Point NM, USA

CMASS sample: 
-264,000 massive galaxies
- 0.43<z<0.7  <z>=0.57
- Volume of 2.2 Gpc3

- density ~ 3⋅10-4h3Mpc-3
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Averaging 600 PTHalo BOSS volumes by Manera et al. (2012)
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averaged signal closely follows the
(

D2
A/H

)1/3
/rs degener-

acy (see their Figure 8). Padmanabhan & White (2008)
show that analysis of the anistropic signal adds HDA in-
formation, and hence breaks the degeneracy. To break the
degeneracy with rs one needs to add additional information
from the CMB anisotropies.

When relating rs measured from the CMB to that in
the large-scale structure, one must take into account that
these two definitions correspond to slightly different sound
horizon radii (see Equation 1 in Blake & Glazebrook 2003).
Because the baryons have momentum at decoupling z∗, the
baryonic acoustic signature in the distribution of matter is
related to rs(zd) > rs(z∗), where zd is the epoch when the
baryonic drag effectively ended (Eisenstein & Hu 1998). The
baryonic acoustic signature in the CMB anisotropies corre-
sponds to z∗. For current rs(z∗) measurements see Hinshaw
et al. (2012), and for rs(zd) predictions from the CMB, see
Table 3 of Komatsu et al. (2009).

Conservation of the observer angle Θ means that true
separations transverse to the line-of-sight component st⊥ will
be related to an apparent “fiducial” component sf⊥ by:2

st⊥ = sf⊥ · α⊥, (3)

where

α⊥ ≡ Dt
A

Df
A

· r
f
s

rts
. (4)

where the“f”subscript indicates the fiducial cosmology when
calculating χ(z), and “t” indicates the true cosmology.

Similarly, the true line-of-sight separation component is
related to the fiducial by:

st|| = sf|| · α||, (5)

with

α|| ≡
H f

Ht
· r

f
s

rts
. (6)

The sound horizon rs(zd) terms appear due to the degener-
acy with DA and H, when applied to the baryonic acoustic
feature as a standard ruler. Here we quote the rescaling in
the position of the peak of the ξ. The purely geometrical
effect of changing the cosmology does not depend on rs(zd).

In Appendix A we explain how we apply the AP test in
practice through the mapping of ξ between these coordinates
systems.

We also make use of an alternative representation of α||

and α⊥ through the isotropic dilation parameter α (Eisen-
stein et al. 2005) and the anisotropic warping parameter ε
(Padmanabhan & White 2008):

α ≡
(

DA

Df
A

) 2
3
(

H f

H

)

1
3 rfs
rs

= α2/3
⊥ α1/3

|| ; (7)

1 + ε =

(

Df
AH

f

DAH

)

1
3

=

(

α||

α⊥

)1/3

. (8)

2 Here we assume the plane-parallel approximation for each pair.

3 CLUSTERING WEDGES

Assuming azimuthal statistical symmetry around the line-
of-sight3 the 3D correlation function ξ(s) can be projected
into 2D polar coordinates: the comoving separation s and
the cosine of the angle from the line-of-sight µ, where the
line-of-sight direction is µ = 1.

The 2D plane of ξ(µ, s) can then be projected to clus-
tering wedges ∆µ as:

ξ∆µ(µmin, s) =
1
∆µ

∫ µmin+∆µ

µmin

ξ(µ, s)dµ. (9)

For the purpose of this study, we focus on two clustering
wedges of ∆µ = 0.5, which we call line-of-sight ξ||(s) ≡
ξ0.5(µmin = 0.5, s) and transverse ξ⊥(s) ≡ ξ0.5(µmin = 0, s).
For consistency we compare all results to the multipole
statistics defined as:

ξ!(s) =
2%+ 1

2

∫ +1

−1

ξ(µ, s)L!(µ)dµ, (10)

where L!(x) are the standard Legendre polynomials.
The clustering wedges and multipoles are complemen-

tary bases of similar information. As shown by Kazin et al.
(2012) up to order % = 4 they are related by:

ξ||(s) = ξ0(s) +
3
8
ξ2(s)−

15
128

ξ4(s), (11)

ξ⊥(s) = ξ0(s)−
3
8
ξ2(s) +

15
128

ξ4(s). (12)

A useful relationship is the fact that the average of the
∆µ = 0.5 clustering wedges results in ξ0.

In real space, where there are no anisotropies, all % > 0
components are nulled, and clustering wedges of any ∆µ
width correspond to the monopole signal.4 The AP effect
breaks this symmetry, causing % > 0 components due to
geometric distortions.

4 DATA

We base our measurements of cz/H/rs and DA/rs on the
large-scale anisotropic correlation function of the BOSS
DR9-CMASS galaxy sample. Here we give a brief description
of the sample, and the calculated ξ(µ, s).

4.1 The DR9-CMASS galaxy sample

We use data from the SDSS-III BOSS survey (Eisenstein
et al. 2011; Dawson et al. 2013). The galaxy targets for BOSS
are divided into two samples, LOWZ and CMASS. These
are selected on the basis of photometric observations carried
out with a drift-scanning mosaic CCD camera (Gunn et al.
1998, 2006) on the Sloan Foundation telescope at the Apache
Point observatory. Spectra of these galaxies are obtained
using the double-armed BOSS spectrographs (Smee et al.
2012). Spectroscopic redshifts are then measured by means
of the minimum-χ2 template-fitting procedure described in

3 The assumption of azimuthal statistical symmetry around the
line-of-sight is true even with geometrical distortions.
4 Homogeneity and isotropy are assumed here.
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In real space, where there are no anisotropies, all % > 0
components are nulled, and clustering wedges of any ∆µ
width correspond to the monopole signal.4 The AP effect
breaks this symmetry, causing % > 0 components due to
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4 DATA

We base our measurements of cz/H/rs and DA/rs on the
large-scale anisotropic correlation function of the BOSS
DR9-CMASS galaxy sample. Here we give a brief description
of the sample, and the calculated ξ(µ, s).

4.1 The DR9-CMASS galaxy sample

We use data from the SDSS-III BOSS survey (Eisenstein
et al. 2011; Dawson et al. 2013). The galaxy targets for BOSS
are divided into two samples, LOWZ and CMASS. These
are selected on the basis of photometric observations carried
out with a drift-scanning mosaic CCD camera (Gunn et al.
1998, 2006) on the Sloan Foundation telescope at the Apache
Point observatory. Spectra of these galaxies are obtained
using the double-armed BOSS spectrographs (Smee et al.
2012). Spectroscopic redshifts are then measured by means
of the minimum-χ2 template-fitting procedure described in
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line-of-sight is true even with geometrical distortions.
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Figure 8. CMASS results pre-reconstruction (left) and post (right). The marginalized results of cz/H/rs (right panels) and DA/rs
(top panels), and the joint constraints (bottom panels). The solid red lines are the posterior, and the dashed blue lines are a Gaussian
approximation, as described in the text. The panels indicate the modes, 68% CL region boundaries, proposition-mean, proposition
standard deviation, skewness and cross-correlation coefficient (r). The contours indicate the 68.27, 95.45% CL regions. For plotting
purposes the post-reconstruction likelihoods assume a prior |ε| < 0.15. The gray dashed lines indicate the fiducial cosmology.

when examining the high S/N mocks; Appendix C3) should
be expected, where r1/H is the cross-correlation between
the cz/H/rs modes obtained when using one method (here
pre-reconstruction) and when using a second (here post-
reconstruction), and similar for rDA

, when discussing DA/rs
results. Also, although one does expect tighter constraints
when applying reconstruction, the DR9 mocks indicate a
19% (116/600) possibility of not improving cz/H/rs. Using
mocks with expected S/N of the final BOSS footprint (de-
scribed in §6.4), this probability is reduced to ∼ 1.5%.

The CMASS cz/H/rs, DA/rs results are summarized in
Table 3 along with various related parameters.

6.3.1 Comparing results of various ξ methods

The results quoted in the previous section are obtained when
using the ∆µ = 0.5 clustering wedges with the RPT-based
template. Table 3 contains the results obtained for eight dif-
ferent combinations of statistics.

When applying the dewiggled template we obtain simi-
lar results to those obtained with RPT-based one. According
to our mocks we expect r1/H ,rDA

∼ 0.5− 0.65 amongst the
templates both pre- and post-reconstruction.

We apply the same test on the [ξ0,ξ2] multipoles and
obtain slightly different results, but consistent within the
68% CL regions, as seen in the bottom plot of Figure 9. Ac-
cording to the DR9 mock realizations we expect cross corre-
lations between wedges results to multipoles by r1/H ,rDA

∼
0.4− 0.45.

Figure 10 displays cz/H/rs, DA/rs likelihood profiles
of all eight different methods analyzed here. The plot shows
that all methods yield consistent results. The ξ0,2 pre-rec
(both RPT-based and dewiggled) cz/H/rs profiles appear to
be wider than the rest, where the ξ0,2 post-rec (both RPT-
based and dewiggled) appear to be the furthest from the rest,
although clearly consistent within the 68− 95% CL regions.
These differences are as expected based on the results from

the mocks (for a visual of higher S/N mock results see top
plot in Figure 12). We investigate various methods of shape
parameters, and find similar results.

6.3.2 Robustness of results to the range of fitted scales

As discussed in §5.3, these measurements focus on the infor-
mation of the anisotropic baryonic acoustic feature and not
from the full shape. As such, we do not expect dependency
of our results on the range of scales used in the analysis.

The results quoted in the previous sections are obtained
when analyzing data in the region of separations between
[smin, smax] = [50, 200]. We compare the results obtained for
various choices of smin, smax. Figure 11 shows the comparison
of the results.

We find that, for the most part, the range of analy-
sis does not affect our main results: mode values, uncer-
tainties, cross-correlation coefficient or skewness. Regions of
exception involve those with smin ≥ 65h−1Mpc, in which
the cz/H/rs uncertainties increase from ∼ 6% to 7% and
even higher, when limiting to smax=160h−1Mpc. This re-
sult could be explained by the fact that in this latter test
the full dip of the baryonic acoustic feature is not used,
and shape parameter values that cause spurious dips are
accepted, whereas for lower values of smin they are not.
We conclude that a more reliable result would include data
points along the full shape, even though that information is
marginalized over through the linear bias and A(s) terms.

We do not consider analyses with smin < 50h−1Mpc,
because the templates used do not describe well the velocity-
dispersion damping in the PTHalo mock-mean signal, and
hence models would too heavily depend on the A(s) terms.

In all ranges investigated the χ2/dof is between 0.6−0.8,
with the smax = 180h−1Mpc yielding the best fits, although
not significantly better ones.
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Figure 8. CMASS result pre-Reconstruction (Top) and post (Bottom). Left: Clustering wedges of CMASS and the best fit model.
The best fit χ2 and number of degrees of freedom are quoted. Right panels: The marginalized results of α|| ≡ (Hrs)fid/(Hrs) (right

panel), α⊥ ≡ (DA/rs)/(DA/rs)fid (top panel), and the joint constraints (bottom panel). The panels indicate - measurements: mode,
proposition-mean; uncertainties: the 68% CL region boundaries; skewness and cross-correlation coefficient (r). The contours indicate the
68.27, 95.45, 99.73% CL regions. The α||,α⊥ = 1 lines are the fiducial cosmology used to convert z to comoving distances. For plotting
purposes the post-Reconstruction likelihoods assume a prior |ε| < 0.15.

our mocks we expect r1/H ,rDA
∼ 0.5 − 0.65 amongst the

templates both pre- and post-Reconstruction.

We apply the same test on the [ξ0,ξ2] multipoles and
obtain slightly different results, but within the 68% CL re-
gions, as seen in the bottom plot of Figure 9. According to
the DR9 mock realizations we expect cross correlations be-
tween wedges results to multipoles by r1/H ,rDA

∼ 0.4−0.45.

Figure 10 displays cz/H/rs, DA/rs likelihood profiles
of all eight different methods analyzed here. The plot shows
that all methods yield consistent results. The ξ0,2 pre-Rec
(both RPT-based and deWiggled) cz/H/rs profiles appear
to be wider than the rest, where the ξ0,2 post-Rec (both
RPT-based and deWiggled) appear to be the furthest from
the rest, although clearly consistent within 68 − 95% CL
regions. These differences are as expected in the mocks. We
investigate various methods of shape parameters, and find
similar results.

6.3.2 Constraining power from the anisotropic baryonic
acoustic feature, not the broad shape

As discussed in §5.3 these measurements focus on the infor-
mation of the anisotropic baryonic acoustic feature and not
from the full shape. As such, we do not expect dependency
of our results on the range of scales used in the analysis.

The results quoted in the previous sections are obtained
when analyzing data in the region of of separations between
[smin, smax] = [50, 200]. We compare the results obtained for
various choices of smin, smax values and display the results
in Figure 11.

We find that, for the most part, the range of anal-
ysis does not affect our main statistics of interest: mode
values, uncertainties, cross-correlation coefficient, skewness.
Regions of exception involve those with smin ≥ 65h−1Mpc,
in which the cz/H/rs uncertainties increase from ∼ 6% to
7% and even higher, when limiting to smax=160h−1Mpc.
This could be explained by the fact, that in this latter test
the full dip of the baryonic acoustic feature is not used,
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Figure 9. The marginalized 68 and 95 per cent CL in the Ωm–
wDE plane for the ΛCDM parameter set extended by including
the redshift-independent value of wDE as an additional parame-
ter. The different sets of contours correspond to the results ob-
tained using the CMB-only (long-dashed lines), the CMB+ξ0(s)
combination (short-dashed lines), the CMB+(ξ⊥(s), ξ‖(s)) (solid
lines), and when this information is combined with our BAO and
SN datasets (dot-dashed lines). The dotted line corresponds to
the ΛCDM model value of wDE = −1.

constraints. In this case we obtain Ωm = 0.299 ± 0.028 and
wDE = −0.93 ± 0.11. These results, which are consistent
with a cosmological constant at a one σ level, represent a
reduction of the allowed range of these parameters by a fac-
tor two with respect to the ones obtained by means of the
CMB+ξ0(s) combination.

Using the consensus anisotropic BAO measurements
from the CMASS clustering wedges and multipoles, Abalone
et al. (2013) found a constraint of wDE = −0.90±0.22, quite
similar to the results obtained using the isotropic BAO re-
sults of Anderson et al. (2012). The comparison of this re-
sult with the ones from the CMB+(ξ⊥(s), ξ‖(s)) combina-
tion highlights the importance of using information from the
full shape of the anisotropic clustering measurements to in-
crease the information extracted from galaxy surveys. As we
will see in Section 5.2.4, this extra information is degraded
when f(zm) is treated as a free parameter.

Our results are in excellent agreement with those
derived from the full shape of the CMASS monopole-
quadrupole pair in our companion paper Chuang et al.
(2013), who find wDE = −0.94 ± 0.13. Samushia et al.
(2013) obtained the constraints Ωm = 0.313 ± 0.017 and
wDE = −0.87±0.05 from the combination of the anisotropic
clustering measurements of Reid et al. (2012) and WMAP7
data. By including smaller scales than in our analysis, with
a different binning scheme, and imposing a stronger prior
on the finger-of-god parameter σv, Reid et al. (2012) found
slightly different, but consistent, geometrical constraints.
These values cut the CMB-only degeneracy in a different
region than our results, corresponding to slightly higher val-
ues or wDE, with a smaller allowed range for this parameter.

Figure 10. The marginalized constraints in the wDE–Ωk plane
for the ΛCDM parameter set extended by allowing for simultane-
ous variations on both of these parameters. The contours corre-
spond to the 68 and 95 per cent CL derived from the combination
of CMB data with the CMASS monopole (dashed lines), the CMB
plus the clustering wedges (solid lines), and when the additional
BAO and SN datasets are added to the later combination (dot-
dashed lines). The dotted lines correspond to the values of these
parameters in the ΛCDM model.

Our final constraints, obtained by including the ad-
ditional BAO and SN data in the analysis, are shown by
the dot-dashed lines in Fig. 9, corresponding to Ωm =
0.283 ± 0.012 and wDE = −1.013 ± 0.064. This result is in
excellent agreement with the standard ΛCDM model value
of wDE = −1, indicated by a dotted line in Fig.9.

5.2.2 Dark energy and curvature

When the dark energy equation of state parameter and Ωk

are varied simultaneously, the geometric degeneracy seen in
the CMB-only results of Figs. 7 and 9 gains an extra degree
of freedom, leading to poor constraints on both of these pa-
rameters. For this reason, the flatness hypothesis has strong
implications on the derived constraints on the dark energy
equation of state. In this section we explore how the con-
straints on wDE are degraded if this assumption is relaxed.

The dashed lines in Fig. 10 show the two-dimensional
marginalized constraints in the Ωk–wDE plane obtained by
combining our CMB dataset with the CMASS monopole.
The information encoded in ξ0(s) reduces the two-
dimensional degeneracy obtained from the CMB data to
an approximately one-dimensional degeneracy, which allows
for values of wDE significantly different from the ΛCDM
one, with wDE = −0.96+0.29

−0.28. The solid contours in Fig. 10
correspond to the results obtained when the CMB data is
combined with the CMASS clustering wedges. This dataset
is much more efficient at breaking the degeneracy ob-
tained from the CMB results, leading to a significant re-
duction of the allowed region of this parameter space, with
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one, with wDE = −0.96+0.29

−0.28. The solid contours in Fig. 10
correspond to the results obtained when the CMB data is
combined with the CMASS clustering wedges. This dataset
is much more efficient at breaking the degeneracy ob-
tained from the CMB results, leading to a significant re-
duction of the allowed region of this parameter space, with
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Figure 9. The marginalized 68 and 95 per cent CL in the Ωm–
wDE plane for the ΛCDM parameter set extended by including
the redshift-independent value of wDE as an additional parame-
ter. The different sets of contours correspond to the results ob-
tained using the CMB-only (long-dashed lines), the CMB+ξ0(s)
combination (short-dashed lines), the CMB+(ξ⊥(s), ξ‖(s)) (solid
lines), and when this information is combined with our BAO and
SN datasets (dot-dashed lines). The dotted line corresponds to
the ΛCDM model value of wDE = −1.

constraints. In this case we obtain Ωm = 0.299 ± 0.028 and
wDE = −0.93 ± 0.11. These results, which are consistent
with a cosmological constant at a one σ level, represent a
reduction of the allowed range of these parameters by a fac-
tor two with respect to the ones obtained by means of the
CMB+ξ0(s) combination.

Using the consensus anisotropic BAO measurements
from the CMASS clustering wedges and multipoles, Abalone
et al. (2013) found a constraint of wDE = −0.90±0.22, quite
similar to the results obtained using the isotropic BAO re-
sults of Anderson et al. (2012). The comparison of this re-
sult with the ones from the CMB+(ξ⊥(s), ξ‖(s)) combina-
tion highlights the importance of using information from the
full shape of the anisotropic clustering measurements to in-
crease the information extracted from galaxy surveys. As we
will see in Section 5.2.4, this extra information is degraded
when f(zm) is treated as a free parameter.

Our results are in excellent agreement with those
derived from the full shape of the CMASS monopole-
quadrupole pair in our companion paper Chuang et al.
(2013), who find wDE = −0.94 ± 0.13. Samushia et al.
(2013) obtained the constraints Ωm = 0.313 ± 0.017 and
wDE = −0.87±0.05 from the combination of the anisotropic
clustering measurements of Reid et al. (2012) and WMAP7
data. By including smaller scales than in our analysis, with
a different binning scheme, and imposing a stronger prior
on the finger-of-god parameter σv, Reid et al. (2012) found
slightly different, but consistent, geometrical constraints.
These values cut the CMB-only degeneracy in a different
region than our results, corresponding to slightly higher val-
ues or wDE, with a smaller allowed range for this parameter.

Figure 10. The marginalized constraints in the wDE–Ωk plane
for the ΛCDM parameter set extended by allowing for simultane-
ous variations on both of these parameters. The contours corre-
spond to the 68 and 95 per cent CL derived from the combination
of CMB data with the CMASS monopole (dashed lines), the CMB
plus the clustering wedges (solid lines), and when the additional
BAO and SN datasets are added to the later combination (dot-
dashed lines). The dotted lines correspond to the values of these
parameters in the ΛCDM model.

Our final constraints, obtained by including the ad-
ditional BAO and SN data in the analysis, are shown by
the dot-dashed lines in Fig. 9, corresponding to Ωm =
0.283 ± 0.012 and wDE = −1.013 ± 0.064. This result is in
excellent agreement with the standard ΛCDM model value
of wDE = −1, indicated by a dotted line in Fig.9.

5.2.2 Dark energy and curvature

When the dark energy equation of state parameter and Ωk

are varied simultaneously, the geometric degeneracy seen in
the CMB-only results of Figs. 7 and 9 gains an extra degree
of freedom, leading to poor constraints on both of these pa-
rameters. For this reason, the flatness hypothesis has strong
implications on the derived constraints on the dark energy
equation of state. In this section we explore how the con-
straints on wDE are degraded if this assumption is relaxed.

The dashed lines in Fig. 10 show the two-dimensional
marginalized constraints in the Ωk–wDE plane obtained by
combining our CMB dataset with the CMASS monopole.
The information encoded in ξ0(s) reduces the two-
dimensional degeneracy obtained from the CMB data to
an approximately one-dimensional degeneracy, which allows
for values of wDE significantly different from the ΛCDM
one, with wDE = −0.96+0.29

−0.28. The solid contours in Fig. 10
correspond to the results obtained when the CMB data is
combined with the CMASS clustering wedges. This dataset
is much more efficient at breaking the degeneracy ob-
tained from the CMB results, leading to a significant re-
duction of the allowed region of this parameter space, with
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tained using the CMB-only (long-dashed lines), the CMB+ξ0(s)
combination (short-dashed lines), the CMB+(ξ⊥(s), ξ‖(s)) (solid
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SN datasets (dot-dashed lines). The dotted line corresponds to
the ΛCDM model value of wDE = −1.

constraints. In this case we obtain Ωm = 0.299 ± 0.028 and
wDE = −0.93 ± 0.11. These results, which are consistent
with a cosmological constant at a one σ level, represent a
reduction of the allowed range of these parameters by a fac-
tor two with respect to the ones obtained by means of the
CMB+ξ0(s) combination.

Using the consensus anisotropic BAO measurements
from the CMASS clustering wedges and multipoles, Abalone
et al. (2013) found a constraint of wDE = −0.90±0.22, quite
similar to the results obtained using the isotropic BAO re-
sults of Anderson et al. (2012). The comparison of this re-
sult with the ones from the CMB+(ξ⊥(s), ξ‖(s)) combina-
tion highlights the importance of using information from the
full shape of the anisotropic clustering measurements to in-
crease the information extracted from galaxy surveys. As we
will see in Section 5.2.4, this extra information is degraded
when f(zm) is treated as a free parameter.

Our results are in excellent agreement with those
derived from the full shape of the CMASS monopole-
quadrupole pair in our companion paper Chuang et al.
(2013), who find wDE = −0.94 ± 0.13. Samushia et al.
(2013) obtained the constraints Ωm = 0.313 ± 0.017 and
wDE = −0.87±0.05 from the combination of the anisotropic
clustering measurements of Reid et al. (2012) and WMAP7
data. By including smaller scales than in our analysis, with
a different binning scheme, and imposing a stronger prior
on the finger-of-god parameter σv, Reid et al. (2012) found
slightly different, but consistent, geometrical constraints.
These values cut the CMB-only degeneracy in a different
region than our results, corresponding to slightly higher val-
ues or wDE, with a smaller allowed range for this parameter.

Figure 10. The marginalized constraints in the wDE–Ωk plane
for the ΛCDM parameter set extended by allowing for simultane-
ous variations on both of these parameters. The contours corre-
spond to the 68 and 95 per cent CL derived from the combination
of CMB data with the CMASS monopole (dashed lines), the CMB
plus the clustering wedges (solid lines), and when the additional
BAO and SN datasets are added to the later combination (dot-
dashed lines). The dotted lines correspond to the values of these
parameters in the ΛCDM model.

Our final constraints, obtained by including the ad-
ditional BAO and SN data in the analysis, are shown by
the dot-dashed lines in Fig. 9, corresponding to Ωm =
0.283 ± 0.012 and wDE = −1.013 ± 0.064. This result is in
excellent agreement with the standard ΛCDM model value
of wDE = −1, indicated by a dotted line in Fig.9.

5.2.2 Dark energy and curvature

When the dark energy equation of state parameter and Ωk

are varied simultaneously, the geometric degeneracy seen in
the CMB-only results of Figs. 7 and 9 gains an extra degree
of freedom, leading to poor constraints on both of these pa-
rameters. For this reason, the flatness hypothesis has strong
implications on the derived constraints on the dark energy
equation of state. In this section we explore how the con-
straints on wDE are degraded if this assumption is relaxed.

The dashed lines in Fig. 10 show the two-dimensional
marginalized constraints in the Ωk–wDE plane obtained by
combining our CMB dataset with the CMASS monopole.
The information encoded in ξ0(s) reduces the two-
dimensional degeneracy obtained from the CMB data to
an approximately one-dimensional degeneracy, which allows
for values of wDE significantly different from the ΛCDM
one, with wDE = −0.96+0.29

−0.28. The solid contours in Fig. 10
correspond to the results obtained when the CMB data is
combined with the CMASS clustering wedges. This dataset
is much more efficient at breaking the degeneracy ob-
tained from the CMB results, leading to a significant re-
duction of the allowed region of this parameter space, with
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Cosmic Ripples, Durham, July 25th 2013 Eyal KazinFigure 8. Pre-reconstruction distributions of (Hrs)fid/(Hrs) and (DA/rs)/(DA/rs)fid modes and their uncertainties of the
mock PTHalos using the RPT ξ||, ξ⊥. The uncertainties are half the 68% CL region of the marginalized likelihood function
(68CLr). The top two plots show the mode measurements against the uncertainties and the bottom two show correlations of
the same information reorganized according to the labeling. In each panel are results of all 600 mock realizations, where the
grey dots are the ≥ 3σ subsample (462 realizations), and blue for the complementary < 3σ subsample. The cross-correlation
coefficient in each panel is indicated by r. All numerical results reflect median and scatter values of the ≥ 3σ subsample. In
the bottom left plot we emphasize the constant α and ε lines, as indicated. In the bottom right plot we mark the DR9-CMASS
uncertainty measurement. For plotting purposes we apply a prior of |ε| < 0.15.
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Damping of the Baryonic Acoustic Feature
Cosmological implications of the BOSS-CMASS clustering wedges 7

which mimics the Finger-of-God effect corresponding to the
assumption of an exponential galaxy velocity distribution
function (Park et al. 1994; Cole et al. 1995).

The solid lines in Figure 3 correspond to the multipoles
ξ!(s) obtained using the parametrization of equation (10),
where the free parameters in the model have been fitted for.
These give an accurate description of the full shape of the
mean monopole and quadrupole from our mock catalogues
on large scales. On the other hand, while the shape of the
mean hexadecapole from the mock catalogues is well de-
scribed by the linear theory prediction, the results obtained
from the parametrization of equation (10) only reproduce
these measurements for scales larger than 80h−1Mpc. These
differences indicate the limitations of this model to describe
the shape of the full anisotropic power spectrum P (µ, k).
However, as we will see in Section 3.3, despite the simplicity
of this recipe, its use as the basis of the modelling of the
clustering wedges can provide unbiased cosmological con-
straints even for surveys probing volumes much larger than
the SDSS-DR9 CMASS sample.

The monopole-quadrupole pair contains most of the in-
formation in the full µ−s plane. This can be seen in Figure 2,
where the dashed lines correspond to the contours of ξ(µ, s)
obtained by considering only the non-linear monopole and
quadrupole terms of the multipole expansion of equation (5).
These show a good agreement with the full measurement, de-
scribing most of its features. This in turn suggests that the
monopole-quadrupole pair may contain the most relevant
information for the description of the clustering wedges, a
fact that we will exploit in the following section to construct
a model for them.

3.2 From ξ(µ, s) to the clustering wedges

Figure 4 shows the mean clustering wedges ξ⊥(s) (panel a)
and ξ‖(s) (panel b) from our mock catalogues, rescaled by
(s/rs)

2.5. The variance from the individual realizations is
shown by the shaded region. The anisotropic clustering pat-
tern generated by redshift-space distortions leads to signifi-
cant differences in the amplitude and shape of the two clus-
tering wedges, with ξ‖(s) showing a lower amplitude and a
stronger damping of the BAO peak than ξ⊥(s). Here we use
the description of the multipoles ξ!(s) of the previous sec-
tion to construct a model for the full shape of the clustering
wedges.

The multipoles description of ξ(µ, s) can be used to
compute the clustering wedges ξ⊥(s) and ξ‖(s). Discarding
contributions from multipoles with " > 4, equation (1) im-
plies that (Kazin et al. 2012)

ξ⊥(s) = ξ0(s)−
3
8
ξ2(s) +

15
128

ξ4(s), (13)

ξ‖(s) = ξ0(s) +
3
8
ξ2(s)−

15
128

ξ4(s). (14)

This means that the contribution from ξ4(s) to the final
clustering wedges is small and can be safely neglected.

The dashed lines in Figure 4 correspond to the linear
theory predictions for ξ‖(s) and ξ⊥(s). These are obtained
using the multipoles ξ!(s) in equations (13) and (14). Non-
linear evolution causes the shape of the clustering wedges
to deviate from these predictions, with the most notable
differences at the scales of the BAO peak. The extraction

Figure 4. The points represent the mean clustering wedges ξ⊥(s)
(panel a) and ξ‖(s) (panel b) from our ensemble of mock cata-
logues, rescaled by (s/rs)2.5. The shaded regions correspond to
the variance from the different realizations. The dashed lines rep-
resent the predictions of linear perturbation theory, while the
solid lines correspond to the clustering wedges obtained from the
parametrization of the non-linear power spectrum given in equa-
tion (10).

of unbiased cosmological information out of a measurement
of the clustering wedges requires an accurate modelling of
these distortions.

The solid lines in Figure 4 show the predictions for ξ⊥(s)
and ξ‖(s) obtained from equations (13) and (14) by consider-
ing the contributions from the multipoles ξ!(s) with " ! 2 in-
ferred from our model of the non-linear redshift-space power
spectrum (equation 10). This simple recipe gives an accurate
description of the full shape of the two clustering wedges,
implying that the monopole-quadrupole pair contain the
most relevant information required to describe these mea-
surements.

3.3 Measuring H(z) and DA(z) from the clustering

wedges

As shown in Figure 4, the model presented in Section 3.1
gives an accurate description of the full shape of the mean
clustering wedges from our ensemble of mock catalogues.
Here we test the ability of this model to recover unbiased
cosmological constraints from these measurements. We do
this by analysing the effect of the fiducial cosmology on ξ⊥(s)
and ξ‖(s).

As described in Section 2.1, the measurement of the
clustering wedges requires the assumption of a fiducial cos-
mology to map the observed redshifts into distances. This
choice has a significant effect on the obtained results. Differ-
ent fiducial cosmologies will lead to a rescaling of the compo-
nents parallel and perpendicular to the line-of-sight, s‖ and
s⊥, of the separation vector s (Padmanabhan & White 2008;
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Reconstruction Technique
A 2% Distance to z = 0.35 : Methods and Data 3

Figure 1. A pictoral explanation of how density-field reconstruction can improve the acoustic scale measurement. In each panel, we

show a thin slice of a simulated cosmological density field. (top left) In the early universe, the initial densities are very smooth. We mark

the acoustic feature with a ring of 150 Mpc radius from the central points. A Gaussian with the same rms width as the radial distribution

of the black points from the centroid of the blue points is shown in the inset. (top right) We evolve the particles to the present day, here

by the Zel’dovich approximation (Zel’dovich 1970). The red circle shows the initial radius of the ring, centered on the current centroid of

the blue points. The large-scale velocity field has caused the black points to spread out; this causes the acoustic feature to be broader.

The inset shows the current rms radius of the black points relative to the centroid of the blue points (solid line) compared to the initial

rms (dashed line). (bottom left) As before, but overplotted with the Lagrangian displacement field, smoothed by a 10h−1
Mpc Gaussian

filter. The concept of reconstruction is to estimate this displacement field from the final density field and then move the particles back

to their initial positions. (bottom right) We displace the present-day position of the particles by the opposite of the displacement field

in the previous panel. Because of the smoothing of the displacement field, the result is not uniform. However, the acoustic ring has

been moved substantially closer to the red circle. The inset shows that the new rms radius of the black points (solid), compared to the

initial width (long-dashed) and the uncorrected present-day width (short-dashed). The narrower peak will make it easier to measure the

acoustic scale. Note that the algorithm applied to the data is more complex than was just described, but this figure illustrates the basic

opportunity of reconstruction.

steps of this algorithm below and discuss details specific to

our implementation in subsequent subsections.

(i) Estimate the unreconstructed power spectrum P (k) or
correlation function ξ(r).

(ii) Estimate the galaxy bias b and the linear growth rate,

f ≡ d lnD/d ln a ∼Ω0.55
M (Carroll et al. 1992; Linder 2005),

where D(a) is the linear growth function as a function of

scale factor a and ΩM is the matter density relative to the

critical density.

(iii) Embed the survey into a larger volume, chosen such

that the boundaries of this larger volume are sufficiently

separated from the survey.

(iv) Gaussian smooth the density field.

(v) Generate a constrained Gaussian realization that

matches the observed density and interpolates over masked

and unobserved regions (§2.3).

(vi) Estimate the displacement field Ψ within the

Zel’dovich approximation (§2.4).

(vii) Shift the galaxies by −Ψ. Since linear redshift-

space distortions arise from the same velocity field, we shift

the galaxies by an additional −f(Ψ · ŝ)ŝ (where ŝ is the

radial direction). In the limit of linear theory (i.e. large

scales), this term exactly removes redshift-space distortions

(Kaiser 1987; Hamilton 1998; Scoccimarro 2004). Denote

these points by D.

(viii) Construct a sample of points randomly distributed

according to the angular and radial selection function and

shift them by −Ψ. Note that we do not correct these for

redshift-space distortions. Denote these points by S.
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Reconstruction on the GiggleZ simulation
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The WiggleZ Dark Energy Survey

• 1000 sq deg , 0.2 < z < 1.0

• 200,000 redshifts

• blue star-forming galaxies

• 2006-2010

http://wigglez.swin.edu.au

(From talk by Chris Blake)

Eyal Kazin, Astrophysics Seminar Technion, August 8th 2011

The Anglo-Australian Telescope

http://wigglez.swin.edu.au/
http://wigglez.swin.edu.au/
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BOSS DR10 & WiggleZ Overlap Analysis

Credit: Florian Beutler

BOSS DR10
(release: July 2013)

WiggleZ
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Reconstructed WiggleZ yields
substantial improvements
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Reconstructed WiggleZ yields
substantial improvements
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Reconstructed WiggleZ yields
substantial improvements
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Reconstructed WiggleZ yields
substantial improvements
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Reconstructed WiggleZ yields
substantial improvements

uncertainties at 100h-1Mpc improve by 20-30%

Kudos to Koda (Jun)
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BOSS Results: pre- Reconstruction Data

(arXiv 1303.4391)
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BOSS Results: post-Reconstruction Data

(arXiv 1303.4391)
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DR9 H(z), DA(z) expectations pre -Rec 
from mock catalogs

Figure 8. Pre-reconstruction distributions of (Hrs)fid/(Hrs) and (DA/rs)/(DA/rs)fid modes and their uncertainties of the
mock PTHalos using the RPT ξ||, ξ⊥. The uncertainties are half the 68% CL region of the marginalized likelihood function
(68CLr). The top two plots show the mode measurements against the uncertainties and the bottom two show correlations of
the same information reorganized according to the labeling. In each panel are results of all 600 mock realizations, where the
grey dots are the ≥ 3σ subsample (462 realizations), and blue for the complementary < 3σ subsample. The cross-correlation
coefficient in each panel is indicated by r. All numerical results reflect median and scatter values of the ≥ 3σ subsample. In
the bottom left plot we emphasize the constant α and ε lines, as indicated. In the bottom right plot we mark the DR9-CMASS
uncertainty measurement. For plotting purposes we apply a prior of |ε| < 0.15.
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Cosmic Ripples, Durham, July 25th 2013 Eyal KazinFigure 9. Post-reconstruction distributions of (Hrs)fid/(Hrs) and (DA/rs)/(DA/rs)fid modes and their uncertainties of the
mock PTHalos using the RPT ξ||, ξ⊥. The uncertainties are half the 68% CL region of the marginalized likelihood function
(68CLr). The top two plots show the mode measurements against the uncertainties and the bottom two show correlations of
the same information reorganized according to the labeling. In each panel are results of all 600 mock realizations, where the
grey dots are the ≥ 3σ subsample (462 realizations), and blue for the complementary < 3σ subsample. The cross-correlation
coefficient in each panel is indicated by r. All numerical results reflect median and scatter values of the ≥ 3σ subsample. In
the bottom left plot we emphasize the constant α and ε lines, as indicated. In the bottom right plot we mark the DR9-CMASS
uncertainty measurement. For plotting purposes we apply a prior of |ε| < 0.15.
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peak-less model
ΛCDM model

Figure 5. In the top plots we examine the significance of the detection of the anisotropic baryonic acoustic feature in CMASS
by comparing χ2 results of two templates: a physical ΛCDM (thick blue) and one with No Peak (thin red). In each panel in
the plots we display the the minimum χ2 surface for (Hrs)fid/(Hrs) (left), and (DA/rs)/(DA/rs)fid (right). The reference χ2

from which each binned result compared to is that of the best fit of the ΛCDM model. The left plots corresponds to the data
pre-Reconstruction and the right to post-Reconstruction. In the bottom plots we run the same procedure on 600 mock catalogs
and present the histogram of the distribution while indicating the CMASS result. The left is pre-Reconstruction, the right is
post.

(iv) Are the resulting distributions of the
(Hrs)

fid/(Hrs) and (DA/rs)/(DA/rs)
fid Gaussian?

As we show below the answer is negative for a CMASS-
DR9 volume, probably due to a weak baryonic
acoustic feature signal in a non-negligible
amount of realizations, and hence we explain our
choice of definition of measurement and uncertainty. To
test the methodology used we perform a similar anal-
ysis on mocks with higher S/N, and find Gaussian like
properties.

(v) Does Reconstruction improve/bias the
above?

6.2.1 Testing the algorithm on high S/N mocks

We test our methodology by applying on a set of 100
mocks with higher S/N than those used in the final
mock DR9 analysis. The motivation for this analysis
is to separate between potential systematic effects from
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Summary

BOSS DR9 H(z) and DA(z) from Clustering Wedges 15

Figure 8. CMASS result pre-Reconstruction (Top) and post (Bottom). Left: Clustering wedges of CMASS and the best fit model.
The best fit χ2 and number of degrees of freedom are quoted. Right panels: The marginalized results of α|| ≡ (Hrs)fid/(Hrs) (right

panel), α⊥ ≡ (DA/rs)/(DA/rs)fid (top panel), and the joint constraints (bottom panel). The panels indicate - measurements: mode,
proposition-mean; uncertainties: the 68% CL region boundaries; skewness and cross-correlation coefficient (r). The contours indicate the
68.27, 95.45, 99.73% CL regions. The α||,α⊥ = 1 lines are the fiducial cosmology used to convert z to comoving distances. For plotting
purposes the post-Reconstruction likelihoods assume a prior |ε| < 0.15.

our mocks we expect r1/H ,rDA
∼ 0.5 − 0.65 amongst the

templates both pre- and post-Reconstruction.

We apply the same test on the [ξ0,ξ2] multipoles and
obtain slightly different results, but within the 68% CL re-
gions, as seen in the bottom plot of Figure 9. According to
the DR9 mock realizations we expect cross correlations be-
tween wedges results to multipoles by r1/H ,rDA

∼ 0.4−0.45.

Figure 10 displays cz/H/rs, DA/rs likelihood profiles
of all eight different methods analyzed here. The plot shows
that all methods yield consistent results. The ξ0,2 pre-Rec
(both RPT-based and deWiggled) cz/H/rs profiles appear
to be wider than the rest, where the ξ0,2 post-Rec (both
RPT-based and deWiggled) appear to be the furthest from
the rest, although clearly consistent within 68 − 95% CL
regions. These differences are as expected in the mocks. We
investigate various methods of shape parameters, and find
similar results.

6.3.2 Constraining power from the anisotropic baryonic
acoustic feature, not the broad shape

As discussed in §5.3 these measurements focus on the infor-
mation of the anisotropic baryonic acoustic feature and not
from the full shape. As such, we do not expect dependency
of our results on the range of scales used in the analysis.

The results quoted in the previous sections are obtained
when analyzing data in the region of of separations between
[smin, smax] = [50, 200]. We compare the results obtained for
various choices of smin, smax values and display the results
in Figure 11.

We find that, for the most part, the range of anal-
ysis does not affect our main statistics of interest: mode
values, uncertainties, cross-correlation coefficient, skewness.
Regions of exception involve those with smin ≥ 65h−1Mpc,
in which the cz/H/rs uncertainties increase from ∼ 6% to
7% and even higher, when limiting to smax=160h−1Mpc.
This could be explained by the fact, that in this latter test
the full dip of the baryonic acoustic feature is not used,
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Take aways: 
• The BOSS DR9 anisotropic baryonic acoustic feature has been detected 

at a significance of 4.7σ (* compared to a no feature model).
• Information from the anisotropic baryonic acoustic feature yields tighter 

cosmological constraints than the angle averaged.
•On average, reconstruction improves H(z), DA(z) constraints by 30%.
•Reconstruction appears to work on WiggleZ, and should substantially 

improve distance constraints. 
• Beutler, Blake et al. (in prep): BOSS and WiggleZ may be treated 

independently in cosmo constraint analysis (due to small overlap) 


