Cosmological Simulations with 2-component CDM

M.V. Medvedev

Ripples in the Cosmos, Durham University, UK 22/7/13

Dark Matter

m

T

σ

flavor

Flavor

iħ $\partial_t \Psi = (H+V)\Psi$

propagation

interaction

• Flavor is a quantum number relevant for particle interactions

• Mass is a property which determines particle propagation

Superposition

Any wave function satisfying the Schrödinger equation iħ $\partial_t \Psi = (H+V)\Psi$

can be written as a superposition of a full set of basis functions

 $\Psi = c_1 \psi_1 + c_2 \psi_2 + c_3 \psi_3 + \dots$

Basis; for example, eigenfunctions of a Hamiltonian

Flavor mixing

Interactions do not care about propagation (mass) eigenstates; Propagation does not care about interaction (flavor) eigenstates.

2-component particle

$$\begin{pmatrix} |\text{flavor}_1\rangle \\ |\text{flavor}_2\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |\text{mass}_{\text{heavy}}\rangle \\ |\text{mass}_{\text{light}}\rangle \end{pmatrix}$$

Illustrative model

Schrödinger equation

$$i\partial_t \begin{pmatrix} m_h(x,t) \\ m_l(x,t) \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} -\partial_{xx}^2/2m_h & 0 \\ 0 & -\partial_{xx}^2/2m_l - \Delta m \end{pmatrix} + \begin{pmatrix} m_h\phi(x) & 0 \\ 0 & m_l\phi(x) \end{pmatrix} + \begin{pmatrix} V_{hh} & V_{hl} \\ V_{lh} & V_{ll} \end{pmatrix} \end{bmatrix} \begin{pmatrix} m_h(x,t) \\ m_l(x,t) \end{pmatrix}$$

$$H free \qquad Hgrav \qquad V$$

$$\left(\begin{array}{cc} V_{hh} & V_{hl} \\ V_{lh} & V_{ll} \end{array}\right) = U \left(\begin{array}{cc} V_1 & 0 \\ 0 & 0 \end{array}\right) U^{\dagger}$$

No flavor mixing case

With flavor mixing

Space-Time diagram

2-component dark matter

Dark Matter -- stable 2-component mixed particle

Neutralinos Sterile neutrinos Axion+photon

...

DM halos -- self-gravitating ensembles of mass eigenstates $|h\rangle$, $|l\rangle$

Mass-conversions and quantum evaporation

$$|h\rangle + |l\rangle \rightarrow |l\rangle + |l\rangle$$

DM halos

Energy conservation:

h

$$\frac{1}{2}(m_l v^2) = (m_h - m_l)c^2$$

 $v \sim v_{kick} = c (2\Delta m / m_l)^{1/2}$

dwarf halos destroyed

central cusps softened

Implementation

•Gadget; 50 Mpc/h box; 3.5 kpc/h, 8×10^{7} M $_{\odot}$ resolution; standard Λ CDM cosmol.

•At each step:

- Pairs of nearest neighbors are identified
- Densities of each species are found at each particle location
- Conversion probabilities are calculated
- Monte-Carlo module is used for conversions
- Energy-momentum is manifestly conserved in every interaction
- 2 free parameters: $\sigma(v)/m$ [with $\sigma \propto (v/v_k)^{-1}$] and $\Delta m/m$ [or $v_k=c(2\Delta m/m)^{1/2}$]

$$P_{s_i t_i \to s_f t_f} = \left(\rho_{t_i} / m_{t_i}\right) \sigma_{s_i t_i \to s_f t_f} |\mathbf{v}_{t_i} - \mathbf{v}_{s_i}|$$

$$\sigma_{s_i t_i \to s_f t_f} = \sigma \; \frac{p_{s_f}}{p_{s_i}} \; \Theta(E_{s_f t_f}) \; B_{(s_i t_i)(s_f t_f)} \qquad B \equiv (B_{ij}) = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix}$$

No modification on large scales

No modification on large scales

No modification on large scales

Less substructure on small scales

Less substructure on small scales

Velocity function

Key parameters

Density profiles

Slopes of density profiles

We fit density profiles with function $\rho = r^{\alpha}/(1+r^{\beta})$ and evaluating α at r = 7 kpc/h

2cDM vs SIDM

σ(v) -- determines slopes:
 density profile (core/cusp)
 mass/vel function (amount of substructure)

 $\Delta m/m$ (or v_k) -- determines break: mass/vel function (where deviates from CDM)

SIDM -- one species, collisional -- $\sigma(v)$ 2cDM -- 2 species, same constraint on $\sigma(v)$ Caveat: fine tuning: "why now?"

Predictions

"inelastic recoil"

Summary

• "quantum evaporation" is a new effect (MVM 2010)

2cDM:

- ♦ can solve small-scale problems simultaneously
- $\bullet \sigma(\mathbf{v})$ consistent with all constraints
- $4 \Delta m/m \sim 10^{-8} \iff v_k \sim 50 \ km/s$
- 2cDM predicts
 - if $m_{\chi} \sim 100 \text{ GeV}$, then $\Delta m_{\chi} \sim keV$
 - ★ inelastic recoils with $\Delta E \sim \Delta mc^2$ in direct detection DM
 - \uparrow γ -ray annihilation line triplet with $\Delta E_{\gamma} = \frac{1}{2} \Delta mc^2 \sim keV$

