Anomalies ?

Dominik J. Schwarz
Universität Bielefeld
a|nom|a|ly
noun (pl. -lies)

1. something that deviates from what is standard, normal, or expected.
2. ASTRONOMY the angular distance of a planet or satellite from its last perihelion or perigee.
ORIGIN late 16th cent.: via Latin from Greek.
based on work with
Craig Copi, Dragan Huterer, Glenn Starkman
Durham, 2013

WMAP 9yr and Planck 1.3yr full sky CMB maps

Bennett et al. 2013

Planck collaboration 2013

The status of large angle CMB anomalies

Planck confirms several anomalies seen by WMAP
effects at $\sim 3 \sigma$ from Planck analysis:

- lack of power (low variance)
- mode alignment now below 3 σ
- hemispherical asymmetry
- parity asymmetry
- cold spot(s)

Planck collaboration. XXIII. 2013
already seen by COBE \& WMAP
WMAP: de Olivera-Costa et al. 2004
WMAP: Eriksen et al. 2004
WMAP: Kim \& Naselsky 2010
WMAP: Vielva et al. 2004
our (preliminary) analysis adds at $\sim 3 \sigma$:

- lack of correlation on large angular scales

COBE \& WMAP

- after Doppler correction: mode alignment more significant
- aligned dipole, quadrupole and octopole WMAP: Schwarz et al. 2004

Why are large angular scales interesting?

$$
s(z)=\theta d_{c}(z)
$$

Why are large angular scales interesting?

360° dominant monopole: isotropy; $T_{0}=2.7255 \pm 0.0006 \mathrm{~K}$; free parameter of cosmological model; T_{0} fixes epoch of observer
180° dipole $T_{1}=3.355 \pm 0.008 \mathrm{mK}$; motion of solar system; fixes observer frame
$>60^{\circ}$ modes cross Hubble horizon at $z<1$ inflation; ISW/RS (nonlinear at $z<0.02$)
$>20^{\circ}$ fully reionized when modes cross inside Hubble horizon inflation; ISW/RS (nonlinear at $z<0.1$); reionization

Cosmological inflation - Generic CMB predictions

temperature fluctuations:
$\delta T(\mathbf{e})=\sum_{\ell m} a_{\ell m} Y_{\ell m}(\mathbf{e}) ; 2 \ell+1$ degrees of freedom for each ℓ
statistical isotropy:
$\left\langle\delta T\left(\mathrm{Re}_{1}\right) \ldots \delta T\left(\mathrm{Re}_{n}\right)\right\rangle=\left\langle\delta T\left(\mathrm{e}_{1}\right) \ldots \delta T\left(\mathrm{e}_{n}\right)\right\rangle, \quad \forall \mathrm{R} \in \mathrm{SO}(3), \forall n>0$

- $\langle\delta T(\mathrm{e})\rangle=0$ and $\left\langle a_{\ell m}\right\rangle=0$
- $\left\langle\delta T\left(\mathrm{e}_{1}\right) \delta T\left(\mathrm{e}_{2}\right)\right\rangle=f\left(\mathrm{e}_{1} \cdot \mathrm{e}_{2}\right)=\frac{1}{4 \pi} \sum_{\ell}(2 \ell+1) C_{\ell} P_{\ell}(\cos \theta), \quad \cos \theta \equiv \mathrm{e}_{1} \cdot \mathrm{e}_{2}$ with $\left\langle a_{\ell m} a_{\ell^{\prime} m^{\prime}}^{*}\right\rangle=C_{\ell} \delta_{\ell \ell} \delta_{m m^{\prime}}, C_{\ell}$ angular power spectrum
gaussianity: no extra information in higher correlation functions
(best) estimator: $\hat{C}_{\ell}=1 /(2 \ell+1) \sum_{m}\left|a_{\ell m}\right|^{2}$ (assumes statistical isotropy)
cosmic variance: $\operatorname{Var}\left(\widehat{C}_{\ell}\right)=2 C_{\ell}^{2} /(2 \ell+1)$ (assumes gaussianity)

Cosmological Inflation - Generic CMB predictions

almost scale invariance, $n \approx 1$:
$C_{\ell} \approx 2 \pi A /[\ell(\ell+1)]$, at the largest scales

$$
A \approx 1000 \mu K^{2} \text { (obs.) }
$$

$C(\theta)$ without $\ell=0,1$ (arbitrary units)

What do we expect?

statistically isotropic, gaussian, nearly scale invariant fluctuations
potential issues:
instrument, algorithms, solar system, galaxy, local structure at $z<0.1$
one or two anomalies at $\sim 3 \sigma$ could be chance
several anomalies at $\sim 3 \sigma$ cannot, but could be caused by
a systematic or local physics ($V_{\text {local }}=10^{-3} V_{\mathrm{H}}$)
otherwise, several statistically independent anomalies at $\sim 3 \sigma$ would rule out standard model

Low- ℓ angular power spectrum

Fisher matrix errors include cosmic variance
Planck collaboration. XV. 2013

Lack of power and hemispherical asymmetry

one point function
$N_{\text {side }}=16$
rows:
U73, CL58, CL37, ecliptic N/S
$70 \mathrm{GHz}, \quad, 143 \mathrm{GHz}, 217 \mathrm{GHz}$

Planck collaboration. XXIII. 2013

WMAP 5yr \& 7yr angular correlation function

lack of correlation Spergel et al. 2003 compare to $10^{5} \mathrm{MC}$ cut sky maps

Sakar et al. 2010

$$
\begin{array}{r}
S_{\alpha}=\int_{-1}^{\alpha} \mathrm{d} \mu C^{2}(\mu) \\
P\left(S_{1 / 2}^{\text {cut } k \mathrm{~g}}\right)<0.1 \%
\end{array}
$$

Planck angular correlation function

Planck collaboration. XXIII. 2013

Planck (smica, nilc, sevem, $70 \mathrm{GHz}, 100 \mathrm{GHz}$ U74, KQ75y9):
robust at $P\left(S_{1 / 2}^{\text {cutsky }}\right)<0.3 \%$
Copi et al. (preliminary)

Phases correlations

surrogates (shuffle data): unexpected scaling indices, up to 6σ

WMAP: Räth et al. 2009; Planck collaboration. XXIII. 2013

A test of statistical isotropy - Multipole vectors

alternative representation of multipoles
Maxwell 1891, Copi, Huterer \& Starkman 2003
one (real) amplitude A_{ℓ} and ℓ headless (unit) vectors:
$2 \ell+1$ degrees of freedom

$$
T_{\ell}(\mathbf{e})=\sum_{m=-\ell}^{\ell} a_{\ell m} Y_{\ell m}(\mathbf{e})=A_{\ell}\left[\mathbf{v}^{(\ell, 1)} \ldots \mathbf{v}^{(\ell, \ell)}\right]_{i_{1} \ldots i_{\ell}}[\mathbf{e} \cdots \mathbf{e}]^{i_{1} \ldots i_{\ell}}
$$

[...] . . .symmetric, traceless tensor product
e.g. quadrupole: $T_{2}(e)=A_{2}\left[\left(\mathbf{v}^{(2,1)} \cdot \mathbf{e}\right)\left(\mathbf{v}^{(2,2)} \cdot \mathbf{e}\right)-\frac{1}{3} \mathbf{v}^{(2,1)} \cdot \mathrm{v}^{(2,2)}\right]$

Our pipeline to analyse WMAP 9yr and Planck 1.3yr data

- harmonic inpainting for full sky analysis

Kim et al. 2012

- remove monopole and dipole from map
- correct for kinetic quadrupole Schwarz et al. 2004
- study full sky cleaned maps and frequency band maps
(V \& W for WMAP; 70 GHz LFI, 100 GHz \& 143 GHZ, HFI)
- consider several masks
typically KQ75y9 or U74 [our version of Planck U73 (not online)]

WMAP and Planck quadrupole-octopole alignment

smica nilc wmap7
wmap9
are consistent with each other
Copi et al. (prel.)

Planck-SMICA quadrupole-octopole alignment

Planck collaboration 2013
Doppler corrected quadrupole Copi et al. (prel.)

Dipole-quadrupole-octopole alignment

most robust and significant alignment > 99.6\% C.L.
Copi et al. (preliminary)

Power asymmetry at higher ℓ and dipolar power modulation?

Planck collaboration. XXIII. 2013
at high ℓ affected by motion, mask \& mode mixing

Status of CMB large angle anomalies

observed microwave radiation at >60 deg disagrees with prediction

2-point correlation too low at 99.7\%CL (Planck) (99.9\%CL WMAP 9yr)
quadrupole and octopole aligned with each other at 98\%CL (Planck) (99.7\%CL WMAP 9yr) correlated with dipole at 99.6% CL (Planck) (99.8\%CL WMAP 9yr) correlated with ecliptic at 95\%CL (Planck) (97\%CL WMAP 9yr)
unlikely explanations after Planck: instrument, algorithm, foreground possible: (statistical fluke), local large scale structure, cosmology, . . .

Origin of large angle CMB anomalies?

- statistical fluke ($P \sim 10^{-6}$)
lack of power and alignment uncorrelated in standard model? Sakar et al. 2010
- alignment from ISW of local structure ($z \sim 0.1$)
why should local structure cancel primordial fluctuations? WISE, radio, ...?
- suppression of power from break in power spectrum, e.g. short inflation would be regenerated by ISW and needs fine tuning
- suppression of power from topology
would need fine tuning of duration of inflation, constrained by data
- Hubble horizon sized perturbation
may explain asymmetries, but not lack of correlation and alignment

CMB polarization as an independent probe

large $S^{T Q}$ would exclude a statistical fluke

Radio (multifrequency) surveys can probe large angles/scales

LOFAR, ASKAP, MeerKat, Apertif, ... , SKA

Radio dipole analysis NVSS (1.4 GHz) and WENSS (325 MHz)

direction of cosmic radio dipole agrees with CMB dipole direction, but amplitude too large by factor of 4!?

Other probes of anisotropies: Hubble expansion rate

hemispherical asymmetry $\delta_{H}<0.04$ at 95% CL from $z<0.2$ SN 1a (here SALT2) Kalus et al. 2013

Conclusions

\diamond Planck confirms WMAP but statistically slightly less significant different full sky reconstructions vary significantly, but all show the same anomalies
\diamond lack of power and correlation at >60 degrees
\diamond alignment of dipole-quadrupole-octopole
\diamond proposed explanations fail on one or several aspects
need to explain how they come along, typically go away for arbitrary modifications
\diamond ways forward: CMB polarisation, large sky radio surveys, . . .

Anomalies!

