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Complex Phases
Peter Coles, Chiang Etal

Complex phases are defined by the CMB multipoles

a`m = |a`m| · exp(iφ`m)

They correspond to rotations around the z-axis
A subgroup of the full SO(3)
Phases are random for a Gaussian distribution
Tests for non-Gaussianity
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WMAP7 Complex Phase Diagram
Kovács, Szapudi & Frei (2013)
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Generalized Phases
Kovács, Carron & Szapudi (2013)

GP’s use unit vectors in the 2`+ 1 dimensional
representation spaces of SO(3)

ε` = (a`0/
√

2,Re[a`1], ....Re[a``], Im[a`1], ....Im[a``])

The amplitude of this vector is essentially the pseudo
power spectrum
The direction is the GP

ε̂` =
ε`√∑
k ε

2
`,k

.
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Generalized Phases

GP’s are random for Gaussian distributions
For a Gaussian distribution the cosmological information is
contained in the (pseudo)-power spectrum
GP’s are complementary to the power spectrum
GP’s + pseudo power spectrum determine a map,
phases+pseudo-C`’s do not
Most non-Gaussianity would result in a degree of phase
correlation
Applications: constrain non-Gaussianity and compare
coherence of two measurements
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Randomizing phases
Left:simulation Right: Smica with Random GP’s
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Planck Smica
with mask degraded to Nside = 512
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Data sets
WMAP+Planck

Our goal is to quantify the coherance of WMAP and Planck
due to observing the same CMB
Gradual decoherence is expected due to noise
WMAP QVW maps foreground reduced or not
Nside = 512 HEALPix maps Temperature Analysis Masks
Planck Smica (and NILC) downgraded to same resolution
and same mask has been used
Analysis has been done with HEALPix based SpICE as
well as specific python programs
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Random Phase Statistics
Cai etal (2013)

Angles between GP’s of two uncorrelated maps are

hn=2`+1(Θ) =
1√
π

Γ(n
2 )

Γ(n−1
2 )
· sinn−2 Θ.

The above formula quickly tends to a unit Gaussian around
90◦

This allows us to form the null hypothesis that “two maps
are uncorrelated”
We aim to reject this at 5σ to show coherence
Meaning of cos θ: correlation coefficient in 2`+ 1
dimensions.
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Random Phase Distributions
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Coherence between noisy maps

When two maps are not random but differ by a random
noise, we can calculate the phase distribution

hN (Θ) =
Γ(n)

Γ
(n−1

2

) sinn−2 Θ

· exp
(
−n

2
SN2 sin2 Θ

)
in−1erfc

(
−
√

n
2

SN cos Θ

)

where

SN =

∣∣εCMB
`

∣∣∣∣εnoise
`

∣∣ =

√
CCMB
`

Cnoise
`
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Results

We estimated the angle between GP’s for Planck Smica
and WMAP

cos Θ` =
∑

k

ε̂Planck
`,k · ε̂WMAP

`,k

Additional meaning: Correlation Coefficient

CWMAP,Planck
` /

√
CWMAP
` CPlanck

` ,

60◦ means 50% correlation

I. Szapudi WMAP-Planck Generalized Phases



Introduction – Generalized Phases (GP’s)
GP’s of WMAP and Planck

200 400 600 800 1000 1200 1400
ℓ

0

20

40

60

80

100
Θ

ℓ

WMAP9 Q

WMAP9 V

WMAP9 W

Q model

V model

W model

0

20

40

60

80

10 20 30 40 50
0

20

40

60

80

I. Szapudi WMAP-Planck Generalized Phases



Introduction – Generalized Phases (GP’s)
GP’s of WMAP and Planck

Interpretation

Our measurement tightly tracks simulation and theory
For the lowest `’s the no-correlation null hypothesis cannot
be rejected at 5σ
Foreground reduced maps increase coherence
Dipole still dehoherent, but has no physical meaning
Decoherence at ` ≈ 700, ` ≈ 900 and ` ≈ 1100 for Q, V
and W maps, respectively.
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Detailed Interpretation

Impact of mask at high `: fully understood from theory and
simulations
For QVW, there is an excess decoherence for ` <∼ 500,400
and 300, respectively.
Our theory and simulation based on WMAP noise model
predicts slightly more coherence
At face value extra noise
Checked pseudo power spectrum: about 2.6% higher for
WMAP, significance 10’s of σ
Excess noise calculated for decoherence cannot fully
explain the bias, except for Q, betwenn 250 < ` < 500
Other possibilities, side-lobes?

I. Szapudi WMAP-Planck Generalized Phases



Introduction – Generalized Phases (GP’s)
GP’s of WMAP and Planck

100 200 300 400 500 600
ℓ

−0.15

0.000.00

0.15

b(
ℓ)

Q bias

Bias model for Q 

100 200 300 400 500 600
ℓ

−4
−2

0
2
4

∆
Θ

ℓ

Q difference

Q model

100 200 300 400 500 600
ℓ

−0.15

0.000.00

0.15

b(
ℓ)

V bias

Bias model for V 

100 200 300 400 500 600
ℓ

−4
−2

0
2
4

∆
Θ

ℓ

V difference

V model

100 200 300 400 500 600
ℓ

−0.15

0.000.00

0.15

b(
ℓ)

W bias

Bias model for W 

100 200 300 400 500 600
ℓ

−4
−2

0
2
4

∆
Θ

ℓ

W difference

W model

I. Szapudi WMAP-Planck Generalized Phases



Introduction – Generalized Phases (GP’s)
GP’s of WMAP and Planck

Forecast
Planck vs CMB

Using our theoretical tools we predicted the coherence of
the Planck GP’s with the true (noiseless) CMB
Both simulations and theory forecast that decoherence
starts around ` <∼ 2900
It makes sense to for studies of non-Gaussianity to use
lower `’s than this.
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Summary

`-by-` coherence of WMAP and Planck (Smica but NILC is
same)
New statistic, GP, a unit vector in the representation space
Quantify coherence with the angle of two unit vectors
Decoherence at 5σ in QVW at ` <∼ 700,900,1100
2.6% higher power in WMAP at very high significance
might be related to excess decoherence up to
` <∼ 500,400,300
excess noise from decoherence only explains Q
250 <∼ ` <∼ 500
therefore quantitatively not a full explanation, need to dive
into data
understood even subtle effect of the mask at high `
forecast for Planck decoherence with the true CMB
future: use GP’s for constraining non-Gaussianity
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