## Revealing galaxy evolution through their globular cluster systems

#### Ana L. Chies Santos The University of Nottingham

With thanks to: Søren Larsen Michele Cantiello Jean Brodie Elizabeth Wehner Jay Strader João Francisco Santos Markus Kissler-Patig

## Outline

# ★ Introduction ✓ literature review ✓ why bother with GCs? ★ Ages Metallicity distributions []

**Co-evolution of GCs and their host galaxies** 

## Introduction

## ★Goal? → evolutionary history of E+S0 ★How? → GC systems

## ★Goal? → evolutionary history of E+S0 ★How? → GC systems



#### NGC3311 & NGC3309

#### Credit: E. Wehner

#### NGC3311 & NGC3309

#### Credit: E. Wehner

#### NGC3311 & NGC3309

Major formation episodes in the history of any large galaxy will be imprinted in the properties of the star cluster population







M87, Larsen+01

Brodie & Strader 06



M87, Larsen+01

Brodie & Strader 06

## Milky Way metallicity bimodality

★Metallicity bimodality in the Milky Way → Zinn 85, Bica+06



## Milky Way metallicity bimodality

#### ★Metallicity bimodality in the Milky Way → Zinn 85, Bica+06





#### ★For E/S0 GC [Fe/H] bimodality has been derived indirectly through (optical) colours



#### ★For E/S0 GC [Fe/H] bimodality has been derived indirectly through (optical) colours



★GCs in closest E's are too faint for the current spectroscopic capabilities → biased samples



 $\begin{array}{l} \bigstar \text{Mergers of spirals} \\ \text{(Ashman & Zepf 1992)} \end{array} \qquad \begin{array}{l} \checkmark \text{GCs} \Rightarrow \text{ merger event} \\ \checkmark \text{GCs} \Rightarrow \text{disc galaxies} \end{array}$ 



 $\begin{array}{l} \bigstar \text{Mergers of spirals} \\ \text{(Ashman & Zepf 1992)} \end{array} \qquad \begin{array}{l} \checkmark \text{GCs} \Rightarrow \text{ merger event} \\ \checkmark \text{GCs} \Rightarrow \text{disc galaxies} \end{array}$ 



 $\bigstar Multi-phase collapse$ (Forbes, Brodie & Grillmair 1997) $GCs <math>\Rightarrow$  in situ  $\Rightarrow$  truncation  $\Rightarrow$  GCs





 $\star$  Muratov & Gnedin 10  $\Rightarrow$  [Fe/H] bimodality is a natural outcome of the hierarchical theory of galaxy formation in some, bot not all range of model realizations



GC obs. properties

#### **★**GC peak metallicity vs. galaxy luminosity



e.g. Brodie & Strader 06

#### **★**GC peak metallicity vs. galaxy luminosity



e.g. Brodie & Strader 06

#### ★Color (metallicities) of both red and blue GC peaks correlate with galaxy luminosity

#### **★**GC peak metallicity vs. galaxy luminosity



e.g. Brodie & Strader 06

★Color (metallicities) of both red and blue GC peaks correlate with galaxy luminosity

\*dwarf galaxies MP GCs are more metal poor than the MP GCs of more massive galaxies

## **\bigstar** Number of GCs normalised per host galaxy luminosity Mv=-15 (S<sub>N</sub>) vs. M<sub>V</sub> (Peng+08)



 $S_N = N_{GC} \times 10^{0.4(M_V+15)}$ 

## **\bigstar** Number of GCs normalised per host galaxy luminosity Mv=-15 ( $S_N$ ) vs. $M_V$ (Peng+08)



 $S_N = N_{GC} \times 10^{0.4(M_V+15)}$ 

★S<sub>N</sub> can be high in both giants and dwarfs → but is low in intermediate luminosity galaxies

★no clear distinction between
blue and red clusters

#### ★Blue-Tilt or mass-metallicity relation for NGC3311 (Wehner+08)



#### ★Blue-Tilt or mass-metallicity relation for NGC3311 (Wehner+08)



★Blue GCs of certain Es have redder colours at brighter magnitudes

★self-enrichment (e.g. Bailin & Harris 2009)

#### ★Wide Field Imaging ✓Pota+2012





#### ✓ Pota+2012



## Challenges in dermining ages & [Fe/H] of GCSs

## "Ages problem"

## ★≈2-8Gyrs GCs in "old" ellipticals (>10Gyrs) ★NGC 4365 and NGC 5846



★Hempel+03

## "Ages problem"

## ★≈2-8Gyrs GCs in "old" ellipticals (>10Gyrs) ★NGC 4365 and NGC 5846



## "Metallicity bimodality problem"

#### 



 $\star$ BHB to RHB  $\Rightarrow$  Wavy feature in the CMR



#### ★Yoon, Yi, Lee 06

★YEPS models → systematic variation in the mean colour of HB stars as a function of [Fe/H]

#### ★Yoon+ Scenario






```
    ★NIR → LIRIS/WHT (FOV=4.2'x4.2') → Ks-band
    (2.2µm)
    ✓ 3 runs (07, 08, 09)
    ★Optical → Archival ACS/HST (FOV= 3.4'x3.4') → g(4750Å), z(8400Å) bands
```



### ★Large number of galaxies

★ Homogeneous

### ★Deep K-band imaging (≈3.4 hrs)

 $\bigstar$ Aided by HST/ACS  $\Rightarrow$  decontamination



## **★**Large number of galaxies

★ Homogeneous

★Deep K-band imaging (≈3.4 hrs)

 $\bigstar$ Aided by HST/ACS  $\Rightarrow$  decontamination

#### **★**Standard selection criteria



## $\star$ Large number of galaxies ★Homogeneous ★Deep K-band imaging (≈3.4 hrs) ★Aided by HST/ACS → decontamination

★Standard selection criteria K≈20-21



★optical/NIR survey of GCs in early-type galaxies

√Chies-Santos+ 2011a,b 2012a





2g

20

g



C-Z

(g-K)





Ν





**G-Z** 

(g-K)









★Yoon+06 effect? ➡ (g-K) and (z-K) ➡ less affected by the HB



## ¿ bimodality ? - HB effect - Yoon+06?

#### ★check if bimodality could be blurred in (g-k) → (z-k) due to K-band errors which are non-negligible

★Simulations ⇒ bimodal (g-z) ⇒ transforming linearly (g-z) ⇒ (g-K) and (z-K) ⇒ +++ randomly realistic magnitude dependent scatter (2 X that of PHOT)







3

(g-K)

4

2

1.0 1.2 1.4 1.6 1 (g-z)

0

0.6

0.8

50

(z-K)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0







★bimodality does not get blurred due to K-band scatter!!! at least not in the GC-rich galaxies...



★bimodality does not get blurred due to K-band scatter!!! at least not in the GC-rich galaxies...

BUT





 $\star$ Simulations  $\Rightarrow$  transforming (g-z)  $\Rightarrow$  (g-K) and (z-K)  $\Rightarrow$  ++ + randomly to the transformed distribution the residuals from the transformation relation



## ★bimodality is blurred due to this scatter in the 2-colour diagrams for over half the cases



# Summary "bimodality"

★colour bimodality does get less pronounced in optical/ NIR colours

### {√(g-K) N4486 X (g-K) N4649

★Formally K-band errors are not responsible for blurring bimodality in the red colours BUT (instrinsic?) scatter in 2-colour diagrams

need better K data

**metallicity bimodality is NOT universal** 

#### ★Blakeslee+12 ➡ GC colour distribution NGC1399 (ACS+WFC3)



#### ★Blakeslee+12 ➡ GC colour distribution NGC1399 (ACS+WFC3)









## Conclusions "bimodality"

### \*Metallicity bimodality is NOT universal!



Milky Way (Zinn 85)
Sombrero (Alves-Brito+11)
N3115 (Brodie+12)
M60?



N1399 (Blakeslee+12)
 M87?
 N1407 (Foster+10a)
 M31 (Caldwell+11)
 CenA (e.g. Woodley10)

**★**Fits much better with the hierarchical merging paradigm

## "Age Problem"

# ★≈2-8Gyrs GCs in "old" ellipticals (>10Gyrs) ★NGC 4365 and NGC 5846









#### ✓ Chies-Santos+2011b



✓ Chies-Santos+2011b



also Charlot & Bruzual and Maraston11

2<ages(Gyrs)<3 Gyrs

#### ✓ Chies-Santos+2011b



also Charlot & Bruzual and Maraston11

2<ages(Gyrs)<3 Gyrs

Padova SSPs, Marigo+08 isochrones




#### Maraston05



also Charlot & Bruzual and Maraston11

2<ages(Gyrs)<3 Gyrs

Padova SSPs, Marigo+08 isochrones











★GC spectra of NGC 4486 GCs Cohen+98 ≈13 Gyrs √Chies-Santos+2011b



★GC spectra of NGC 4486 GCs Cohen+98 ≈13 Gyrs √Chies-Santos+2011b



$$(g - z) = 0.465 * (g - K) - 0.349$$



$$(g - z) = 0.465 * (g - K) - 0.349$$
$$(g - z)_b = 0.260 * (g - K)_b + 0.232$$
$$(g - z)_r = 0.340 * (g - K)_r + 0.140.$$



#### **★** distance from the best fit line



# "δ" parameter

#### ★ distance from the best fit line



#### "δ" parameter age indicator **★** distance from the best fit line 1.6 metal-rich 1.4 "older" (N-0) 1.0 δ $\delta_{blue}$ δ $\delta_{\text{(g-k)}}$ 0.8 "younger" metal-pool 0.6 2.5 3.0 2.0 3.5 4.0 (g-k)

### Ages & galaxy morphology





## Ages & galaxy morphology



### Ages & galaxy morphology





#### ★ galaxy mass?









#### SAUN $\lambda_R \Rightarrow \text{proxy for}$ angular momentum

Emsellem+07

 $\begin{cases} \lambda_R < 0.1 \implies \text{slow rotators} \\ \lambda_R > 0.1 \implies \text{fast rotators} \end{cases}$ 





#### § δ=age difference



## sea difference



## sea difference



GC system age  $\Leftrightarrow$  galaxy morphology



★E assembled most of their GCs in a shorter and earlier period than SOs

GC system age  $\Leftrightarrow$  galaxy morphology



GC system age  $\Leftrightarrow$  galaxy morphology



GC system age  $\stackrel{\gamma}{\Leftrightarrow}$  galaxy morphology

#### 

★ dwarf galaxies
\$\frac{1}{k}\$ have a more extended SFH than more massive galaxies
(eg. Tolstoy+09)
\$\frac{1}{k}\$ contain almost exclusively metal-poor GCs (Forbes+00)

GC system age  $\stackrel{\gamma}{\Leftrightarrow}$  galaxy morphology

#### 

★ dwarf galaxies
\$\langle \langle have a more extended SFH than more massive galaxies
(eg. Tolstoy+09)
\$\screwt \contain almost exclusively metal-poor GCs (Forbes+00)

1.GCs formed in the accreted host galaxy (Côté+98)
2.GCs formed during the merger event from a metal-poor gas reservoir of the accreted dwarfs. Muratov & Gnedin 10 ⇒ mergers of smaller hosts create exclusively blue clusters.

#### GCS NGC 4365 old? young?

★Larsen+03 → intermediate ages, lower S/N on LRIS Keck

★Brodie+05 → old ages, higher S/N on LRIS Keck

★FORS2 sample, the best of 3!

#### GCS NGC 4365 old? young?

# ★Larsen+03 ⇒ intermediate ages, lower S/N on LRIS Keck ★Brodie+05 ⇒ old ages, higher S/N on LRIS Keck

#### ★FORS2 sample, the best of 3!

#### Spectroscopy



★ 22 GC candidates, ≃9 hours★ VLT/FORS2 MXU

★Lick\_Indices
√Lick\_EW/EZ\_ages (Graves & Schiavon 08)

★Ages & [Fe/H] ✓ Schiavon+07 ✓ Thomas+11





**√**L03

**√**B05









## Summary "ages"

★Padova SSPs + Marigo+08 isochrones for old ages (14Gyr) → better match than previous models → but still not there yet!

★avoiding SSPs → relative ages

★NGC4365 has an old GC system, old as NGC4486 + NGC4649

**★**relation between δ (the ages of the GC systems) and galaxy morphology

√driven by metal-poor clusters

## Summary "ages"

★Padova SSPs + Marigo+08 isochrones for old ages (14Gyr) → better match than previous models → but still not there yet!

★avoiding SSPs → relative ages

★NGC4365 has an old GC system, old as NGC4486 + NGC4649

**★**relation between δ (the ages of the GC systems) and galaxy morphology

√driven by metal-poor clusters

★old ages, consistent with Brodie+05 & photometric part Chies-Santos +11b

## Conclusion


