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Standard big-bang cosmology
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- Newtonian perturbation theory

- Relativistic perturbation theory
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Evolution of  the Universe
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Observations
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Hubble 1929 - first evidence
for universe expansion

CMB as measured by COBE -
perfect blackbody
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Friedmann models

Homogeneous and isotropic solution to GR

Scale factor,         , obeys

Energy conservation
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Microwave background



Modelling inhomogeneities

Friedmann is an approximation: there exists structure 
(galaxies, stars, etc..), and CMB anisotropies

Consider perturbations about a homogeneous ‘background’ 
solution

e.g. write energy density as

newtonian mechanics...
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Modelling inhomogeneities

Friedmann is an approximation: there exists structure 
(galaxies, stars, etc..), and CMB anisotropies
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solution

e.g. write energy density as

newtonian mechanics...
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inhomogeneous
 perturbation



Newtonian cosmology

Newtonian perturbation theory:

energy density:

velocity:               ,    Newtonian potential: 
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⇢(~x, t) = ⇢̄(t)
⇣
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Fluid evolution equations

Poisson equation

�̇ + ~r ·
h
(1 + �)~v

i
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Fluid evolution equations

Poisson equation

�̇ + ~r ·
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i
= 0
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~rP
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Linearised fluid equations

Poisson equation

�̇ + ~r · ~v = 0

~̇v +H~v = �~r�� 1
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Alternatively, writing                      , obtain
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Alternatively, writing                      , obtain

12

�P = c2s�⇢

@2�

@t2
+ 2H

@�

@t
= 4⇡G⇢̄� + c2sr2�

Hubble drag: suppresses 
growth of perturbations

Gravitational term: perturbations grow 
via gravitational instability

Pressure term



Relativistic inhomogeneities

General relativity governs dynamics of the universe

Must use relativity to describe regions of high density, fluids 
moving an appreciable fraction of    , or large scales

Einstein’s field equations:

13
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Relativistic inhomogeneities

General relativity governs dynamics of the universe

Must use relativity to describe regions of high density, fluids 
moving an appreciable fraction of    , or large scales

Einstein’s field equations:

13

c

Gµ⌫ = 8⇡GTµ⌫

Einstein tensor, function of the 
metric tensor, describes geometry energy momentum tensor,

describes matter

ds

2 = gµ⌫dx
µ
dx

⌫



Cosmological perturbations
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How to proceed?

- Fully inhomogeneous solution (extremely difficult in 
principle; impossible in practice?)

- Similar to Newtonian case: expand around a homogeneous 
solution - Cosmological Perturbation Theory

Inhomogeneous perturbations to

matter, e.g., energy density 

geometry: metric tensor

⇢(~x, t) = ⇢̄(t)
⇣
1 + �(~x, t)

⌘

gµ⌫(~x, t) = g

(0)
µ⌫ (t) + �gµ⌫(~x, t)
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FLRW metric:

- homogeneous & isotropic

- take flat spatial space in agreement with observations

[g(0)µ⌫ ] =


1 0
0 a2(t)�ij

�

gµ⌫(~x, t) = g

(0)
µ⌫ (t) + �gµ⌫(~x, t)
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Perturbed FLRW metric:

two independent scalars, e.g.

or

Different ‘gauges’ - can choose to work with different variables 
depending on the problem at hand

[�gµ⌫ ] =


�2�(~x, t) a(t)B,i(~x, t)

a(t)B,i(~x, t) 0

�

[�gµ⌫ ] =


�2�(~x, t) 0

0 a

2(t)2 (~x, t)�ij

�

gµ⌫(~x, t) = g

(0)
µ⌫ (t) + �gµ⌫(~x, t)
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Perturbed FLRW metric:

two independent scalars, e.g.

or

Different ‘gauges’ - can choose to work with different variables 
depending on the problem at hand

[�gµ⌫ ] =


�2�(~x, t) a(t)B,i(~x, t)

a(t)B,i(~x, t) 0

�

[�gµ⌫ ] =


�2�(~x, t) 0

0 a

2(t)2 (~x, t)�ij

�

gµ⌫(~x, t) = g

(0)
µ⌫ (t) + �gµ⌫(~x, t)

Newtonian gauge

Uniform curvature gauge



Governing equations

Fluid equations

Poisson equation

define

so 
17

�0 + (1 + w)(r2v � 3 0) = 3H(w � c2s )�

v0 +H(1� 3w)v +
w0

1 + w
v +
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i
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Dark matter perturbations, pressureless, using     :
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Dark matter perturbations, pressureless, using     :
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�

�0 +r2v = 0

v0 +Hv + � = 0

r2� = 4⇡G⇢̄a2�

�̇ + ~r · ~v = 0

~̇v +H~v = �~r�

r2� = 4⇡G⇢̄a2�

In this limit, agrees with non-relativistic perturbation theory



When Newtonian theory is not 
enough...

But Newtonian theory cannot model

- perturbations in relativistic species (radiation, neutrinos,...)

- regions of high pressure (eg early universe)

- regions of a comparable size of the horizon

Effects of relativity on initial condition generation for N-body 
simulations?

- Work in progress with Hidalgo ++
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Figure 1: 3D rendering of regions of strong vorticity in a 20483 hydrodynamic simulation. From

left to right and top to bottom, succesive zooms into the structures are shown. Note the small scale

vortex filaments, and the development of clusters of vortex tubes at intemediate scales. Velocity

field lines are shown in red as a reference in the last zoom (right).

scale shear [1], the presence of long-time correlations in the small scales (compared with the eddy

turnover time), slower than expected recovery of isotropy, and intermittency (which in turn implies

corrections to the energy spectrum).

Recently [2], we performed a hydrodynamic simulation on a grid of 20483 regularly spaced points,

with a Taylor Reynolds number of Rλ ∼ 1300 (Fig. ). At this Reynolds number the anisotropic large

scale flow pattern, the inertial range, the bottleneck, and the dissipative range are clearly visible,

thus providing a good test case for the study of turbulence as it appears in nature. A comparison

with runs at lower Reynolds numbers was performed, and showed the emergence of scaling laws for

the relative amplitude of local and non-local interactions in spectral space.

The data allowed for a refined analysis of the behavior and structure of turbulent flows as the

Reynolds number is increased. We have in particular showed that: (i) the bottleneck (the pile up

of energy close to the dissipation scale) is linked to the depletion of nonlinearities as we approach

this scale; and (ii) convergence to the asymptotic turbulence regime appears to be very slow: even

though the nonlocal interactions do diminish with Reynolds number, they are still measurable at
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Vorticity



Vorticity in fluid dynamics
Classical fluid dynamics

Euler equation

Evolution:

- ‘source’ term zero if         and        are parallel

- i.e. barotropic fluid, no source term

The inclusion of entropy provides a source for vorticity

21
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Entropy perturbations

Adiabatic system

Non-adiabatic system allows for entropy perturbations

These entropy perturbations naturally occur in any system 
containing more than one component, such as

- Standard cosmological fluid (relativistic vs. non-rel matter)

- Models of cosmological inflation

22

�P

Ṗ
=

�⇢

⇢̇

�P

Ṗ
6= �⇢

⇢̇
�P =

Ṗ

⇢̇
�⇢+ �Pnad



Linear vorticity in cosmology

First order vorticity evolves as

Reproduces well known result that, in radiation domination,

i.e. in absence of anisotropic stress, no source term:                is 
a solution to the evolution equation            

23

!0
1ij � 3Hc2s!1ij = 0

Kodama & Sasaki (1984)

|!1ij!1
ij | / a�2

!1ij = 0



Beyond linear perturbation theory

Can go beyond the linear approximation by expanding small 
perturbations in a series, e.g., 

where 

In linear perturbation theory scalars decouple from vectors 
and tensors

Crucial difference at higher orders: vectors, e.g.,  can be 
sourced by couplings between scalars.

24

�⇢(~x, t) = ⇢̄(t) + �⇢1(~x, t) +
1

2
�⇢2(~x, t)

�⇢2 < �⇢1 < ⇢̄



Vorticity evolution: second order

Second order vorticity,         , evolves as 

assuming zero first order vorticity.

Including entropy gives a non-zero source term

cf. 

This generalises Crocco’s theorem to an expanding framework
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!2ij

!0
2ij � 3Hc2s!2ij =

2a

⇢0 + P0

(
3HV1[i�Pnad1,j] +

�⇢1,[j�Pnad1,i]

⇢0 + P0

)

AJC, Malik & Matravers (2009)
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‘Estimating’ the power spectrum
Work in radiation era, and define the power spectrum as

For the inputs:

- Can solve linear equation for       ; leading order for small 

- ‘Ansatz’ for non-adiabatic pressure
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These give the spectrum
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Observational signatures

For linear perturbations, B mode polarisation of the CMB only 
produced by tensor perturbations:

- scalar perturbations only produce E mode polarisation

- vectors produce B modes, but decay with expansion

Second order, vector perturbations produced by first order 
density and entropy perturbations source B mode polarisation

Important for current and future CMB polarisation expts

Could prove important for studying physics of primordial 
magnetic fields

28

Fenu et. al. (2011)



Observational signatures

29

6

observations (together with other cosmological probes
like supernova distances) have revealed a universe filled
with atoms (4%), dark matter (23%) and dark energy
(73%).

3.2. Polarization Anisotropy

Polarization from Thomson scattering
The CMB is not only characterized by temperature

fluctuations, but also by polarized anisotropies30,31. The
cross-section for Thomson scattering of photons by elec-
trons depends on the polarization states of the incoming
and outgoing radiation. If a free electron “sees” an in-
cident radiation pattern that is isotropic, then the out-
going radiation remains unpolarized because orthogonal
polarization states cancel out. However, if the incoming
radiation field has a quadrupolar anisotropy, a net linear
polarization is generated (see Fig. 5). Since quadrupo-

Quadrupole
Anisotropy

Thomson 
Scattering

e–

Linear 
Polarization

COLD

HOT

FIG. 5: Thomson scattering of radiation with a quadrupole
anisotropy generates linear polarization. Red colors (thick
lines) represent hot and blue colors (thin lines) cold
radiation32.

lar temperature anisotropy is generated at last-scattering
when the tight-coupling approximation breaks down, lin-
ear polarization results from the relative velocities of
electrons and photons on scales smaller than the pho-
ton di�usion length-scale. Since both the velocity field
and the temperature anisotropies are created by den-
sity fluctuations, a component of the polarization should
be correlated with the temperature anisotropy. An im-
portant corollary to this argument is that no additional
polarization anisotropy is generated after last-scattering,
since there are no free electrons to scatter the CMB pho-
tons (i.e. there is no equivalent of the Sachs-Wolfe e�ect
for polarization). However, when the first generation of
stars forms, their UV light reionizes the universe; free
electrons scatter CMB photons, introducing some opti-
cal depth and uniformly suppressing the power spectrum
of the temperature fluctuations by � 30%. Further-

more, the free electrons see the local CMB quadrupole
at the redshift of star-formation and polarize the CMB
at large scales where no other mechanism of polarization
operates33. The CMB polarization anisotropy is small –
in the standard picture of the thermal history, it is only a
few percent of the temperature anisotropy. Consequently
it is much harder to measure than the former.

B-modes and gravitational waves
For the purpose of this review, a crucial feature of the

CMB polarization anisotropy is its potential to reveal
the signature of primordial gravitational waves34,35. The
CMB temperature anisotropy, being a scalar quantity,
cannot di�erentiate between contributions from density
perturbations (a scalar quantity) and gravitational waves
(a tensor quantity). However, polarization has “handed-
ness”, and thus can discriminate between the two. For
this purpose it is useful to decompose the polarization
anisotropy into two orthogonal modes (see Fig. 6):

i) E-mode: a curl-free mode (giving polarization vec-
tors that are radial around cold spots and tangen-
tial around hot spots on the sky) is generated by
both density and gravitational wave perturbations;

ii) B-mode: a divergence-free mode (giving polariza-
tion vectors with vorticity around any point on the
sky) can only be produced by gravitational waves.

E < 0 E > 0

B < 0 B > 0

FIG. 6: Examples of E-mode and B-mode patterns of polar-
ization. Note that if reflected across a line going through the
center the E-patterns are unchanged, while the positive and
negative B-patterns get interchanged.

The primordial B-mode anisotropy is at least an or-
der of magnitude smaller than the E-mode polarization.
This, combined with the di⇥culty of separating primor-
dial B-modes from B-modes created by astrophysical
foregrounds like polarized dust in our galaxy, makes the
measurement of a primordial gravitational wave contri-
bution a great challenge – the “holy grail” of CMB mea-
surements.



Future directions

Aim to go beyond rough approximation of power spectrum

Require non-adiabatic pressure perturbation from realistic 
scenarios, e.g.

- Relative entropy in concordance cosmology

- Isocurvature in multiple inflation models

Investigate potential of second order vorticity to source 
primordial magnetic seed fields.

30

Brown, AJC & Malik (2011)

Huston & AJC (2011)



Summary
Universe is well described by a homogeneous and isotropic 
FLRW background + perturbations

Inhomogeneous perturbations described using cosmological 
perturbation theory

In non-relativistic regime, this corresponds to Newtonian 
perturbation theory (with a suitable choice of variables)

Vorticity can be generated at second order in cosmological 
perturbations, sourced by entropy perturbations

Could prove important for B-mode CMB polarisation, or for 
sourcing primordial magnetic fields.
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