Vorticity in the Early Universe

Adam J. Christopherson

RAS Sir Norman Lockyer Fellow School of Physics and Astronomy University of Nottingham

IA, UNAM, Mexico City 7th June 2012

Outline

- * Introduction and motivation
- * Standard big-bang cosmology
- * Modelling inhomogeneities
 - Newtonian perturbation theory
 - Relativistic perturbation theory
- * Application: vorticity beyond linear order
- * Summary and conclusions

Evolution of the Universe

Observations

CMB as measured by COBE perfect blackbody

Hubble 1929 - first evidence for universe expansion

Friedmann models

- * Homogeneous and isotropic solution to GR
- * Scale factor, a(t), obeys

$$H^2 \equiv \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)$$

* Energy conservation

$$\dot{\rho} = -3H(\rho + P)$$

6

Friedmann models

* Homogeneous and isotropic solution to GR

* Scale factor, a(t), obeys

$$H^2 \equiv \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2}$$

spatial curvature k=+1: open k=0: infinite/flat k=-1: closed

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)$$

* Energy conservation

$$\dot{\rho} = -3H(\rho + P)$$

6

$$H^2 \equiv \frac{\dot{a}^2}{a^2} = \frac{8\pi G}{3}\rho - \frac{k}{a^2}$$

$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}(\rho + 3P)$$

7

radiation, CDM, baryonic matter, dark energy...

$$\Omega_{i} = \frac{\rho_{i}}{\rho_{\text{crit}}} = \frac{8\pi G}{3H^{2}}\rho_{i}$$
$$\Omega_{k} = -\frac{k}{Ha^{2}}$$

$$\Omega = \sum_{i} \Omega_{i} = 1 - \Omega_{k}$$

8

Cosmic Microwave Background Spectrum from COBE

Modelling inhomogeneities

 Friedmann is an approximation: there exists structure (galaxies, stars, etc..), and CMB anisotropies

* Consider perturbations about a homogeneous 'background' solution

* e.g. write energy density as

$$\rho(\vec{x},t) = \bar{\rho}(t) \left(1 + \delta(\vec{x},t) \right)$$

* newtonian mechanics...

Modelling inhomogeneities

* Friedmann is an approximation: there exists structure (galaxies, stars, etc..), and CMB anisotropies

* Consider perturbations about a homogeneous 'background' solution

* e.g. write energy density as

$$\rho(\vec{x},t) = \bar{\rho}(t) \left(1 + \delta(\vec{x},t)\right)$$

* newtonian mechanics...

Modelling inhomogeneities

 Friedmann is an approximation: there exists structure (galaxies, stars, etc..), and CMB anisotropies

- * Consider perturbations about a homogeneous 'background' solution
- * e.g. write energy density as

$$\rho(\vec{x},t) = \bar{\rho}(t) \left(1 + \delta(\vec{x},t)\right)$$

inhomogeneous perturbation

* newtonian mechanics...

Newtonian cosmology

* Newtonian perturbation theory:

energy density: $\rho(\vec{x}, t) = \bar{\rho}(t) \left(1 + \delta(\vec{x}, t)\right)$ velocity: $\vec{v}(\vec{x}, t)$, Newtonian potential: $\Phi(\vec{x}, t)$ * Fluid evolution equations $\dot{\delta} + \vec{\nabla} \cdot \left[(1 + \delta)\vec{v}\right] = 0$

$$\dot{\vec{v}} + H\vec{v} + (\vec{v}\cdot\vec{\nabla})\vec{v} = -\vec{\nabla}\Phi - \frac{\vec{\nabla}P}{\bar{\rho}(1+\delta)}$$

* Poisson equation

$$\nabla^2 \Phi = 4\pi G \bar{\rho} a^2 \delta$$

* Fluid evolution equations

$$\dot{\delta} + \vec{\nabla} \cdot \left[(1+\delta)\vec{v} \right] = 0$$
$$\dot{\vec{v}} + H\vec{v} + (\vec{v}\cdot\vec{\nabla})\vec{v} = -\vec{\nabla}\Phi - \frac{\vec{\nabla}P}{\bar{\rho}(1+\delta)}$$

* Poisson equation

$$\nabla^2 \Phi = 4\pi G \bar{\rho} a^2 \delta$$

* Linearised fluid equations

$$\dot{\delta} + \vec{\nabla} \cdot \vec{v} = 0$$
$$\dot{\vec{v}} + H\vec{v} = -\vec{\nabla}\Phi - \frac{1}{\bar{\rho}}\vec{\nabla}\delta P$$

* Poisson equation

$$\nabla^2 \Phi = 4\pi G \bar{\rho} a^2 \delta$$

$$\frac{\partial^2 \delta}{\partial t^2} + 2H \frac{\partial \delta}{\partial t} = 4\pi G \bar{\rho} \delta + c_{\rm s}^2 \nabla^2 \delta$$

$$\frac{\partial^2 \delta}{\partial t^2} + 2H \frac{\partial \delta}{\partial t} = 4\pi G \bar{\rho} \delta + c_{\rm s}^2 \nabla^2 \delta$$

Hubble drag: suppresses growth of perturbations

 $\frac{\partial^2 \delta}{\partial t^2} + 2H \frac{\partial \delta}{\partial t} = 4\pi G \bar{\rho} \delta + c_{\rm s}^2 \nabla^2 \delta$

Hubble drag: suppresses growth of perturbations

Gravitational term: perturbations grow via gravitational instability

 $\frac{\partial^2 \delta}{\partial t^2} + 2H \frac{\partial \delta}{\partial t} = 4\pi G \bar{\rho} \delta + c_{\rm s}^2 \nabla^2 \delta$

Hubble drag: suppresses growth of perturbations Pressure term

Gravitational term: perturbations grow via gravitational instability

Relativistic inhomogeneities

- * General relativity governs dynamics of the universe
- * Must use relativity to describe regions of high density, fluids moving an appreciable fraction of c, or large scales
- * Einstein's field equations:

 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

Relativistic inhomogeneities

- * General relativity governs dynamics of the universe
- * Must use relativity to describe regions of high density, fluids moving an appreciable fraction of c, or large scales
- * Einstein's field equations:

 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

Einstein tensor, function of the metric tensor, describes geometry

energy momentum tensor, describes matter

Relativistic inhomogeneities

- * General relativity governs dynamics of the universe
- * Must use relativity to describe regions of high density, fluids moving an appreciable fraction of c, or large scales
- * Einstein's field equations:

 $G_{\mu\nu} = 8\pi G T_{\mu\nu}$

Einstein tensor, function of the metric tensor, describes geometry

energy momentum tensor, describes matter

 $ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu}$

Cosmological perturbations

* How to proceed?

- Fully inhomogeneous solution (*extremely* difficult in principle; impossible in practice?)
- Similar to Newtonian case: expand around a homogeneous solution Cosmological Perturbation Theory

* Inhomogeneous perturbations to

matter, e.g., energy density $\rho(\vec{x},t) = \bar{\rho}(t) \left(1 + \delta(\vec{x},t)\right)$

geometry: metric tensor $g_{\mu\nu}(\vec{x},t) = g^{(0)}_{\mu\nu}(t) + \delta g_{\mu\nu}(\vec{x},t)$

 $g_{\mu\nu}(\vec{x},t) = g_{\mu\nu}^{(0)}(t) + \delta g_{\mu\nu}(\vec{x},t)$

* FLRW metric:

$$[g^{(0)}_{\mu\nu}] = \begin{bmatrix} 1 & 0\\ 0 & a^2(t)\delta_{ij} \end{bmatrix}$$

- homogeneous & isotropic
- take flat spatial space in agreement with observations

$g_{\mu\nu}(\vec{x},t) = g^{(0)}_{\mu\nu}(t) + \delta g_{\mu\nu}(\vec{x},t)$

* Perturbed FLRW metric:

two independent scalars, e.g.

$$\begin{bmatrix} \delta g_{\mu\nu} \end{bmatrix} = \begin{bmatrix} -2\Phi(\vec{x},t) & 0\\ 0 & a^2(t)2\Psi(\vec{x},t)\delta_{ij} \end{bmatrix}$$

or

$$\begin{bmatrix} \delta g_{\mu\nu} \end{bmatrix} = \begin{bmatrix} -2\phi(\vec{x},t) & a(t)B_{,i}(\vec{x},t) \\ a(t)B_{,i}(\vec{x},t) & 0 \end{bmatrix}$$

* Different 'gauges' - can choose to work with different variables depending on the problem at hand

$g_{\mu\nu}(\vec{x},t) = g^{(0)}_{\mu\nu}(t) + \delta g_{\mu\nu}(\vec{x},t)$

* Perturbed FLRW metric:

two independent scalars, e.g.

Newtonian gauge

$$\begin{bmatrix} \delta g_{\mu\nu} \end{bmatrix} = \begin{bmatrix} -2\Phi(\vec{x},t) & 0\\ 0 & a^2(t)2\Psi(\vec{x},t)\delta_{ij} \end{bmatrix}$$

or

Uniform curvature gauge

$$\begin{bmatrix} \delta g_{\mu\nu} \end{bmatrix} = \begin{bmatrix} -2\phi(\vec{x},t) & a(t)B_{,i}(\vec{x},t) \\ a(t)B_{,i}(\vec{x},t) & 0 \end{bmatrix}$$

* Different 'gauges' - can choose to work with different variables depending on the problem at hand

Governing equations

* Fluid equations

$$\delta' + (1+w)(\nabla^2 v - 3\Psi') = 3\mathcal{H}(w - c_s^2)\delta$$
$$v' + \mathcal{H}(1 - 3w)v + \frac{w'}{1+w}v + \frac{\delta P}{\bar{\rho}(1+w)} + \Phi = 0$$

* Poisson equation

SO

$$\nabla^2 \Phi = -4\pi G a^2 \bar{\rho} \Big[\delta - 3\mathcal{H}(1+w) \nabla^2 v \Big]$$

define $\Delta = \delta - 3\mathcal{H}(1+w)\nabla^2 v$

$$\nabla^2 \Phi = 4\pi G \bar{\rho} a^2 \Delta$$

17

 $\nabla^2 \Phi = 4\pi G \bar{\rho} a^2 \Delta$

* Dark matter perturbations, pressureless, using Δ :

 $\Delta' + \nabla^2 v = 0$ $v' + \mathcal{H}v + \Phi = 0$

$$\nabla^2 \Phi = 4\pi G \bar{\rho} a^2 \Delta$$

* Dark matter perturbations, pressureless, using Δ :

 $\Delta' + \nabla^2 v = 0$ $v' + \mathcal{H}v + \Phi = 0$

* In this limit, agrees with non-relativistic perturbation theory

$$\dot{\delta} + \vec{\nabla} \cdot \vec{v} = 0$$
$$\dot{\vec{v}} + H\vec{v} = -\vec{\nabla}\Phi$$
$$\nabla^2 \Phi = 4\pi G \bar{\rho} a^2 \delta$$

18

When Newtonian theory is not enough...

* But Newtonian theory cannot model

- perturbations in relativistic species (radiation, neutrinos,...)
- regions of high pressure (eg early universe)
- regions of a comparable size of the horizon
- * Effects of relativity on initial condition generation for N-body simulations?
 - Work in progress with Hidalgo ++

500 mb avort (10⁴-5/5) hybt (m) wind (m/s) at 12227.UU.200 15 Ext and weither weither as the backet here in a fair for the fair for t

Vorticity

20

Vorticity in fluid dynamics

* Classical fluid dynamics $\omega \equiv \nabla \times v$

* Euler equation
$$\frac{\partial \boldsymbol{v}}{\partial t} + (\boldsymbol{v} \cdot \nabla) \boldsymbol{v} = -\frac{1}{\rho} \nabla P$$

- * Evolution: $\frac{\partial \omega}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{\omega}) + \frac{1}{\rho^2} \nabla \rho \times \nabla P$
 - 'source' term zero if ∇P and $\nabla \rho$ are parallel
 - i.e. barotropic fluid, no source term
- * The inclusion of entropy provides a source for vorticity

Crocco (1937)

Entropy perturbations

* Adiabatic system

$$\frac{\delta P}{\dot{P}} = \frac{\delta \rho}{\dot{\rho}}$$

* Non-adiabatic system allows for entropy perturbations

$$\frac{\delta P}{\dot{P}} \neq \frac{\delta \rho}{\dot{\rho}} \qquad \longrightarrow \qquad \delta P = \frac{\dot{P}}{\dot{\rho}} \delta \rho + \delta P_{\text{nad}}$$

* These entropy perturbations naturally occur in any system containing more than one component, such as

- Standard cosmological fluid (relativistic vs. non-rel matter)
- Models of cosmological inflation

Linear vorticity in cosmology

* First order vorticity evolves as

$$\omega_{1ij}' - 3\mathcal{H}c_{\rm s}^2\omega_{1ij} = 0$$

Kodama & Sasaki (1984)

* Reproduces well known result that, in radiation domination, $|\omega_{1ij}\omega_1{}^{ij}|\propto a^{-2}$

* i.e. in absence of anisotropic stress, no source term: $\omega_{1ij} = 0$ is a solution to the evolution equation

Beyond linear perturbation theory

* Can go beyond the linear approximation by expanding small perturbations in a series, e.g.,

$$\delta\rho(\vec{x},t) = \bar{\rho}(t) + \delta\rho_1(\vec{x},t) + \frac{1}{2}\delta\rho_2(\vec{x},t)$$

where $\delta \rho_2 < \delta \rho_1 < \bar{\rho}$

- * In linear perturbation theory scalars decouple from vectors and tensors
- * Crucial difference at higher orders: vectors, e.g., can be sourced by couplings between scalars.

Vorticity evolution: second order

* Second order vorticity, ω_{2ij} , evolves as

$$\omega_{2ij}' - 3\mathcal{H}c_{\rm s}^2\omega_{2ij} = \frac{2a}{\rho_0 + P_0} \left\{ 3\mathcal{H}V_{1[i}\delta P_{{\rm nad}1,j]} + \frac{\delta\rho_{1,[j}\delta P_{{\rm nad}1,i]}}{\rho_0 + P_0} \right\}$$

assuming zero first order vorticity.

cf.

* Including entropy gives a non-zero source term

AJC, Malik & Matravers (2009)

$$\frac{\partial \boldsymbol{\omega}}{\partial t} = \nabla \times (\boldsymbol{v} \times \boldsymbol{\omega}) + \frac{1}{\rho^2} \nabla \rho \times \nabla P$$

* This generalises Crocco's theorem to an expanding framework

'Estimating' the power spectrum

* Work in radiation era, and define the power spectrum as

$$\langle \omega_2^*(\boldsymbol{k}_1,\eta)\omega_2(\boldsymbol{k}_2,\eta)\rangle = rac{2\pi}{k^3}\delta(\boldsymbol{k}_1-\boldsymbol{k}_2)\mathcal{P}_{\omega}(k,\eta)$$

* For the inputs:

- Can solve linear equation for $\delta \rho_1$; leading order for small $k\eta$ $\delta \rho_1(k,\eta) = A\left(\frac{k}{k_0}\right)\left(\frac{\eta}{\eta_0}\right)^{-4}$

26

- 'Ansatz' for non-adiabatic pressure $\delta P_{\text{nad1}}(k,\eta) = D\left(\frac{k}{k_0}\right)^2 \left(\frac{\eta}{\eta_0}\right)^{-5}$

* These give the spectrum $\frac{\mathcal{P}_{\omega}}{Mpc^4} \sim 0.87 \times 10^{-2} \left(\frac{k}{k_0}\right)^7 + 3.73 \times 10^{-11} \left(\frac{k}{k_0}\right)^9 - 7.71 \times 10^{-20} \left(\frac{k}{k_0}\right)^{11}$

AJC, Malik & Matravers (2011)

Observational signatures

- * For linear perturbations, B mode polarisation of the CMB only produced by tensor perturbations:
 - scalar perturbations only produce E mode polarisation
 - vectors produce B modes, but decay with expansion
- * Second order, vector perturbations produced by first order density and entropy perturbations source B mode polarisation
- * Important for current and future CMB polarisation expts
- * Could prove important for studying physics of primordial magnetic fields Fenu et. al. (2011)

Observational signatures

Future directions

* Aim to go beyond rough approximation of power spectrum

* Require non-adiabatic pressure perturbation from realistic scenarios, e.g.

- Relative entropy in concordance cosmology Brown, AJC & Malik (2011)
- Isocurvature in multiple inflation models

Huston & AJC (2011)

* Investigate potential of second order vorticity to source primordial magnetic seed fields.

Summary

- * Universe is well described by a homogeneous and isotropic FLRW background + perturbations
- * Inhomogeneous perturbations described using cosmological perturbation theory
- * In non-relativistic regime, this corresponds to Newtonian perturbation theory (with a suitable choice of variables)

- * Vorticity can be generated at second order in cosmological perturbations, sourced by entropy perturbations
- * Could prove important for B-mode CMB polarisation, or for sourcing primordial magnetic fields.