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Friedmann models

* Homogeneous and isotropic solution to GR

% Scale factor, a(t), obeys

a4 (G k

H? = —
a? 3 P a?
a 4G
. 3P
i 3(p+ )

* Energy conservation

p=—3H(p+ P)
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Friedmann models

* Homogeneous and isotropic solution to GR

% Scale factor, a(t), obeys spatial curvature
k=+1: open
a2 /1@ I k=0: infinite/flat
H® = 2 P k=—1: closed
a 3 a? :
a A G
— = 3P
. 5 (p+3P)

* Energy conservation

g=—3H(p+t D)
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radiation, CDM, baryonic
matter, dark energy...
Pi 87’(’ G

Qi = )
Pcrit 3H2 P
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Modelling inhomogeneities

% Friedmann is an approximation: there exists structure
(galaxies, stars, etc..), and CMB anisotropies

* Consider perturbations about a homogeneous ‘background’
solution

K e.g. write energy density as

p(&,1) = p(t) (1+8(,1))

¥ newtonian mechanics...



Modelling inhomogeneities

% Friedmann is an approximation: there exists structure
(galaxies, stars, etc..), and CMB anisotropies

* Consider perturbations about a homogeneous ‘background’

solution
K e.g. write energy density as

p(&,1) = p(t) (1+8(,1))

¥ newtonian mechanics...



Modelling inhomogeneities

% Friedmann is an approximation: there exists structure
(galaxies, stars, etc..), and CMB anisotropies

* Consider perturbations about a homogeneous ‘background’

solution
K e.g. write energy density as

p(#.1) = p(t) (1 + 8(.1)
\ inhomogeneous

* newtonian mechanics... perturbation



Newtonian cosmology

* Newtonian perturbation theory:

energy density: p(Z,t) = p(t) (1 + 0 (&, t))
velocity: v(Z,t), Newtonian potential: (1)
* Fluid evolution equations
04V - [(1+5)17] — 0
U+ HG+ (0- V)= -V =

* Poisson equation

V20 = 4nGpas

I0



* Fluid evolution equations

5+ V- {(1+5)q7} =0
= VP

0+ HT+(7-V)T= -V

o(1 4+ 0
* Poisson equation p( )
V20 = 4nGpas
* Linearised fluid equations
§+V-T=0
: _) 1 -
v+ Hi=—-V® — V6P
0

* Poisson equation

V20 = 471G pas
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field equations:




Relativistic inhomogeneities

* General relativity governs dynamics of the universe

* Must use relativity to describe regions of high density, fluids
moving an appreciable fraction of ¢, or large scales

* Einstein’s field equations:

Gy = 8nG1,

Einstein tensor, function of the \A

metric tensor, describes geometry ener%y mo.Ill)lentum tensor,
escribes matter

13



Relativistic inhomogeneities

* General relativity governs dynamics of the universe

* Must use relativity to describe regions of high density, fluids
moving an appreciable fraction of ¢, or large scales

* Einstein’s field equations:

Gy = 8nG1,

Einstein tensor, function of the \A

metric tensor, describes geometry ener%y mo.Ill)lentum tensor,
—_\ escribes matter

ds® = e dr dr
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Cosmological perturbations

* How to proceed?

- Fully inhomogeneous solution (extremely difficult in
principle; impossible in practice?)

- Similar to Newtonian case: expand around a homogeneous
solution - Cosmological Perturbation Theory
* Inhomogeneous perturbations to

matter, e.g., energy density p(Z,t) = p(t) (1 + 4(, t))

geometry: metric tensor g, (Z,t) = gl(LOV) (t) +og .l
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9 (T, 1) = gy (1) + 69, (Z, 1)

* Perturbed FLRW metric: /

two independent scalars, e.g.

 _23(Z, 1) 0
| = _ 0 a®()2W(Z, )05
—2¢(Z,t)  a(t)B;(Z,t)

0g,] = | a(t)B.i(Z, 1) 0

* Different ‘gauges’ - can choose to work with different variables
depending on the problem at hand
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9 (T, 1) = gy (1) + 69, (Z, 1)

* Perturbed FLRW metric: /

two independent scalars, e.g.
i Newtonian gauge
| —29(x, ) 0

09wl =1 0 2)20(& )6y,

or
Uniform curvature gauge

—2¢(%,t)  a(t)B(7,1)
0g,] = | a(t)B.i(Z, 1) 0

* Different ‘gauges’ - can choose to work with different variables
depending on the problem at hand
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(Governing equations

* Fluid equations

6 4+ (1 +w) (Vv —30') = 3H(w — c2)d

S

¢ — —=
v+ H(1 — 3w)v Y 50+ w) S =0

* Poisson equation

V2P = —47TGa2,5[5 ~3H(1 + w)v%}

define A = § — 3H(1 + w)V?v

SO V20 = 4nGpa* A

L7
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V20 = ArGpa’ A

* Dark matter perturbations, pressureless, using AN

A+ Vv =0
v'+Hv+ P =0
* In this limit, agrees with non-relativistic perturbation theory
0+V-7=0
U+ Hi = -V

V2® = 47G a6
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When Newtonian theory 1s not
enough...
* But Newtonian theory cannot model
- perturbations in relativistic species (radiation, neutrinos,...)
- regions of high pressure (eg early universe)

- regions of a comparable size of the horizon

¥ Effects of relativity on initial condition generation for N-body
simulations?

-  Work in progress with Hidalgo ++

19
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Vorticity in fluid dynamics

* Classical fluid dynamics w =V X v

: 1
* Euler equation g’: - (v-V)v = _;vp

. ) 1
* EVOIUthIl. a@_‘: — V X% (’U < w) i Evp <« VP
- ‘source’ term zero if VP and Vp are parallel

- i.e. barotropic fluid, no source term

% The inclusion of entropy provides a source for vorticity

Crocco (1937)
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Entropy perturbations

5P _ bp

* Adiabatic system

* Non-adiabatic system allows for entropy perturbations

* These entropy perturbations naturally occur in any system
containing more than one component, such as

- Standard cosmological fluid (relativistic vs. non-rel matter)

- Models of cosmological inflation

22



Linear vorticity in cosmology

* First order vorticity evolves as

/ 2 _
wy;; — SHCcswii5 =0
Kodama & Sasaki (1984)

* Reproduces well known result that, in radiation domination,

\wlijwlij\ X CL_2

* i.e. in absence of anisotropic stress, no source term: wi;; = Uis
a solution to the evolution equation
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Beyond linear perturbation theory

* Can go beyond the linear approximation by expanding small
perturbations in a series, e.g.,

. 1.

where 0py < 0p1 < p

* In linear perturbation theory scalars decouple from vectors
and tensors

* Crucial difference at higher orders: vectors, e.g., can be
sourced by couplings between scalars.
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Vorticity evolution: second order

¢ Second order vorticity, w2;;, evolves as

assuming zero first order vorticity.

¥ IIlClUdiIlg entropy giVCS a NON-Zero source term
AJC, Malik & Matravers (2009)

cf. 1
%—i:Vx(vxw) pQV'OXVP

* This generalises Crocco’s theorem to an expanding framework

25



‘Estimating’ the power spectrum

* Work in radiation era, and define the power spectrum as

27

<("J>2I< (klvn)w2(k27n)> — E5(k1 — kQ)Pw(kan)

* For the inputs:

- Can solve linear equation for 0p1; leading order for small £7

stk = () ()

- Ansatz’ for non-adiabatic pressure
5Poasthon) = D() ()
nadl\~, 1)) = ]{50 o
26






Observational signatures

* For linear perturbations, B mode polarisation of the CMB only
produced by tensor perturbations:

- scalar perturbations only produce E mode polarisation
- vectors produce B modes, but decay with expansion

¥ Second order, vector perturbations produced by first order
density and entropy perturbations source B mode polarisation

% Important for current and future CMB polarisation expts

% Could prove important for studying physics of primordial
magnetic fields

Fenu et. al. Gor1)
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Future directions

* Aim to go beyond rough approximation of power spectrum

* Require non-adiabatic pressure perturbation from realistic
scenarios, e.g.

- Relative entropy in concordance cosmology . AJC & Malik Gord)

- Isocurvature in multiple inflation models Huston & AJC L

% Investigate potential of second order vorticity to source
primordial magnetic seed fields.

30



Summary

Universe is well described by a homogeneous and isotropic
FLRW background + perturbations

Inhomogeneous perturbations described using cosmological
perturbation theory

In non-relativistic regime, this corresponds to Newtonian
perturbation theory (with a suitable choice of variables)

Vorticity can be generated at second order in cosmological
perturbations, sourced by entropy perturbations

Could prove important for B-mode CMB polarisation, or for

- sourcing primordial magnetic fields.
31



