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Introduction

What is a mock catalogue?

A fake/simulated galaxy catalogue which resembles a genuine galaxy redshift
survey catalogue, but is built from a cosmological simulation.

Motivation for mocks:

Develop and test analysis code
(test photo-z, group finding, clustering; can be done in advance of having the
observational data; you know what results you should get)

Assess systematic errors
(non-trivial due to non-linearity and galaxy bias)

Estimate covariance matrices
(Needed to get accurate parameter constraints)
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Mock Ingredients

A cosmological N-body simulation
or shortcut (PTHaloes; PINNOCHIO; EZmocks)
(gravity only as large scale hydro simulations of sufficient resolution are not
yet feasible)

A method of placing galaxies into the simulation

Reproduction of the survey selection and completeness
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Examples

On the right is a famous plot from the
Millennium Nature paper comparing
genuine surveys with simulated
equivalents. Here the mocks were used
to make a direct visual comparison of
theory and observation, supplementing
the quantitative statistical comparison.

Our focus is more on developing mocks
for direct use in quantitative analysis.
Some recent examples include:

GAMA and 2dFGRS group finding

BOSS reconstruction

Springel et al 2006
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Example: 2PIGG (2dF Group Catalogue)

The 2dFRGS team used mock
catalogues to tune the parameters of a
group and cluster finding algorithm. In
the DM simulation from which the mock
was made one can accurately identify
the dark matters halos (groups and
clusters) using standard methods. The
mock enables:

1 The 2PIGG algorithm to be tuned
so that the resulting catalogue has
an optimal balance of completeness
and purity (finds most of the
groups and assigns the right
galaxies to them)

2 Determine the likely bias in any
inferred property (e.g. in the
inferred cluster mass-to-light ratios)

Eke et al 2004
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Example: BOSS reconstruction

Anderson et al 2012

Padmanabhan et al 2012

The small excess of galaxies expected at
the BAO scale is distorted by the growth
of large scale structure.
Reconstruction attempts to undo this
distortion so that the BAO length scale
can be measured more accurately. The
full analysis and reconstruction process
is complex and non-linear.
Mock catalogues are need to test the
pipeline and ... (continued)
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Example: BOSS reconstruction

demonstrate that the true length scale (α = 1) is recovered with minimal bias and
variance.
The mocks can also be used to determine whether analysis of the galaxy
clustering in Fourier space (the power spectrum P (k)) or configuration space (the
correlation function ξ(r)) yields the tightest constraints.

Anderson et al 2012
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Outline

N-body Simulation Techniques
(force calculation; timesteps; softening; initial conditions)

N-body Results
(the cosmic web, halos and merger trees)

Populating with Galaxies
(HOD; SHAM; semi-analytics)

Survey Construction
(lightcones; selection functions; targeting and redshift completeness)
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The N-body Problem

Evolve the orbits of system of N gravitating masses.

Only the 2-body problem (Keplerian orbits) can be solved analytically.

The numerical problem breaks down into

1 Calculate the resultant force on each particle due to the sum of the forces
exerted on it by every other particle.

2 Integrate the orbit of each particle through a small timestep then repeat step
1.

Often a leapfrog integration scheme is employed:

xn+1/2 = xn−1/2 + vn ∆t

vn+1 = vn + v̇n+1/2 ∆t

nn−1/2 n+1/2 n+1 n+3/2

x x xvv
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Methods of force calculation

Direct summation (PP) : Flexible, but requires N2 operations

Tree : The space containing the particles is recursively divided into level after
level of smaller and smaller regions, until there is no more than one particle in
each region (there are different methods eg Barnes-Hut or KD-tree).
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Methods of force calculation

This defines a tree structure in which the leaves contain the information on the
individual particles at the lowest level and the twigs and larger branches groupings
of particles from the higher levels.
The force computing algorithm is faster than PP as one exploits that the force on
a given particle by a collection of distant particles can be approximated by
replacing that distant collection of particles by a single more massive particle
(sometimes higher order multipole corrections are taken into account).

The result is a very flexible algorithm that scales as N log N .

The force accuracy is determined by an “opening angle criterion”. I.e nodes
subtending more than this critical angle are opened up.
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Methods of force calculation

Particle Mesh (PM): A gridded density field,
ρ(x), is constructed by assigning mass particles to
a grid (different methods eg NGP, CIC and TSC).

CIC

To compute the forces, F = −∇Φ, the potential Φ is computed on a grid by
using a Fast Fourier Transform to solve Poisson’s equation, ∇2Φ = 4πGρ. In
Fourier Space this is −k2Φk = 4πGρk. Thus to solve FT ρ(x) → ρk, compute
Φk = −4πGρk/k2 and FT back to get Φ. This is all fast as the FFT takes only
NG log NG operations, where NG is the number of grid points.
The down side is the force resolution is determined by the cell size of the grid.
It also results in periodic boundary conditions, but this is often what one wants for
cosmological simulations.
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N-body Codes

P3M (Efstathiou) – Combined PP at short range with PM at large scales.

GADGET (Springel) – Combines PP at short range with a tree at
intermediate scales and a mesh for the largest scales. GADGET is also highly
parallel.

PKDGRAV (Stadel, Quinn) (k-D tree)

ART (Kravstov , Klypin, Khokhlov) Adaptive Refinement Tree but actually
uses meshes.
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Timescales

Before deriving the equations of stellar dynamics it is useful to define two
important timescales for stellar systems.

The dynamical time of a system is often defined as

tdyn = 1/
√

Gρ.

It is essentially the same as the crossing time

tcross = R/v,

as for a spherical system in virial equilibrium

v2 =
GM

R

R/v =

√
R3

GM
≈ 1/

√
Gρ.
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The Two Body Relaxation Time

This is the timescale over which a given star has its orbit completely changed due
to two body encounters with other stars in the system.

Each time two stars pass close by each other they will bend each others orbits.
The two body relaxation time can loosely be defined as the time it takes for
multiple encounters to bend the original orbit through 1 radian.
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The Two Body Relaxation Time

i) Consider an encounter between a pair of stars, where b is the impact parameter,
v the velocity and ∆Ψ the deflection angle.
1

2

b ∆ψ

tt

perpendicularparallel

F F

The lower plots show the
time dependence of the
force exerted on star 1 by
star 2.
By symmetry the net
impulse in the parallel
direction is zero.

In the perpendicular direction Fmax ≈
Gm2

b2
and ∆t =

b

v
Hence

∆p⊥ =
Gm2

b2

b

v
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The Two Body Relaxation Time

Hence the deflection angle is ∆Ψ =
∆v

v
=

Gm

bv2

Now the number of
encounters with impact
parameter b per unit time
is given by the usual
kinetic theory calculation

b

db

vdt

collisions/unit time = 2π b db v〈n〉

Hence the mean square cumulative deflection angle after time t is

(∆Ψ)2 =
G2m2

v3
〈n〉 [ln b]bmax

bmin
t

If we define trelax as when ∆Ψ = 1, i.e. when the initial stellar orbits are
completely scrambled

⇒ trelax =
v3

G2m2〈n〉 ln(bmax/bmin)

There is no absolutely rigorous way of defining bmin and bmax.
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The Two Body Relaxation Time

Convention is to assume bmax = R, the size of the system and
bmin = λ = 〈n〉−1/3, the typical stellar separation .
Since trelax ∝ 1/ ln(R/λ) we can afford to be sloppy.
Let us compare this 2-body relaxation time with the dynamical or crossing time of
a stellar system.

tcross =
R

v

⇒ trelax
tcross

=
v4

G2Rm2〈n〉 ln(R/λ)

Now we can re-express this using

1 Virial Theorem: 2T + W = 0 i.e. Nmv2 −Gm2N2/R ≈ 0, where N is the
total number of stars. → v2 ≈ GmN/R.

2 R/λ = (R3/λ3)1/3 = (R3〈n〉)1/3 = N1/3

⇒ trelax
tcross

=
N

lnN

(
1
8

)
with 1/8th coming from calibrating using numerical

simulations.
The more stars in the system the less important the 2-body relaxation.
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The Two Body Relaxation Time

System N R tdyn trelax

Globular Cluster 105 10 pc 105 years 107 years
Elliptical Galaxy 1011 10 kpc 108 years 1016 years
Galactic DM halos 1067 300 kpc 109 years 1074 years
Cluster of Galaxies 103 3 Mpc 108 years 109 years

Two body relaxation is not important in determining the evolution of galaxies or
their DM halos, i.e. collisions can be ignored. They are also only of secondary
importance in globular clusters and galaxy clusters as trelax > tdyn, but shorter
than tHubble.
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Softening

The number of dark matter particles in a galaxy halo may well exceed N = 1067

(∼ 1012M�c2/1GeV ). Hence the two-body scattering time τ2body � tUniverse

and so 2-body scattering should be completely neglible. However N-body
simulations have been done with only thousands to millions of particles per
galactic halo which would result in a 2-body relaxation time of ∼ 1014 years.

The problem is that an N-body particle doesn’t represent a single point mass, but
really a cloud of much less massive particles. Thus it doesn’t make sense to use a
1/r potential down to zero separation. Hence N-body simulations (except those of
point masses like stars in a globular cluster) use softened potentials/force laws. e.g

Φ =
−GM

(r2 + ε2)1/2
. Plummer Potential
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Softening

The form of softening most often employed these days is to adopt the following
spline kernel as a description of the density profile of a particle

W =
8
π


1− 6x2 + 6x3 0 < x < 1/2
2(1− x)3 1/2 < x < 1
0 x > 1

where x = r/(2.8ε). The 2.8 was chosen such that at r = ε the force is the same
as with the Plummer Potential. At r > 2.8ε one recovers the Newtonian Potential.

The effective resolution of a simulation is determined by an interplay of the mass
resolution, force softening and time step. (Power et al 2003)
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Timesteps

The timestep ∆t used to advance the position of a particle needs to be small
enough so that the correct orbit is followed. Many choices of timestep criteria are
used. Eg. Power et al (2003) consider

∆t =



ηaε

√
ε/a,

ηa/a,

ηaσ(σ/a),
ηρ(Gρ)−1/2

,

ησρ min[(Gρ)−1/2
, (σ/a)],

and find the best results with ∆t ≈ 0.2
√

ε/a, where ε is the softening scale and a
the local acceleration.
GADGET has individual timesteps for each particle and can be based on this
criteria.
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Parallel Computing

The goal in parallel computing is to share the workload between N processors and
aim to gain a speed up of a factor N (i.e. achieve scaling), but this is hampered
by many issues.
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Gadget 2

The public Gadget2 code (Springel 2005) combines a variety of techniques to
achieve good scaling.
The large scale force is computed by an FFT mesh. One can use standard libraries
that are fully parallel and scale very well.
This leaves only a short range force which allows the forces in separated regions to
be calculated independently.
The computational volume is decomposed into separate domains using a space
filling Peano-Hilbert curve.
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Gadget2

Particles are gridded up into cells and the cells assigned to sections of the P-H
curve. The curve is then broken into N contiguous sections each containing 1/Nth
of the particles. These are the domains that are passed to each processor.

A tree structure is used to work out which neighbouring domains/processors
information has to be exchanged with in order to compute the total force.
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Gadget2

This works well sharing the load in simulations of cosmological volumes.
It is not so good for simulations of individual objects (e.g. a single galaxy halo of
galaxy cluster) as it can end up with all the particles that need the shortest
timestep being on the same processor.

Gadget3 subdivides the
P-H curve further to avoid
this

Good scaling it achieved with hundreds
of processors.
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Other parallel algorithms

There is active research into other parallelization strategies to achieve scaling to
much high processor numbers.
One approach is task based parallelism.

QuickSched: Pedro Gonnet
Prof Shaun Cole (ICC) Mock Surveys April 2015 27 / 55



SWIFT

SWIFT is N-body and hydrodynamic code (Pedro Gonnet, Matthieu Schaller &
Tom Theuns) that uses graph-based domain decomposition. It uses information
from a task graph to decompose the simulation domain such that the work and
not just the the data, as in the case in the GADGET schemes, is equally
distributed amongst all processor nodes.

Strong scaling test comparison of GADGET and SWIFT.
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Cosmological Initial Conditions

How do we set up an initial particle distribution with positions and velocities
consistent with the CMB (I.E. a Gaussian random field with the power spectrum
of a cosmological model whose parameters have been constrained by the CMB)?

CAMB or CMBFAST model fit to the CMB
data provides a well specified model for the
mass power spectrum P (k) = 〈|δk|2〉.
From this one can define a particular
realizationa of a Gaussian random field
δ(x) =

∑
k δkeik.x, but how do we set up

consistent particle positions and velocities.

aReal and Imaginary components of δk chosen
independently from a zero mean Gaussian with variance
P (k)(∆k)3/2
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Fluid Equations

The Zel’dovich approximation provides a very convenient way of setting up the
initial conditions of a cosmological N-body simulation. At high redshift the
amplitude of density perturbations are very low (10−5 at recombination) and so
one can attempt to use perturbation theory to solve the full set of equations
describing a continuum of particles (the fluid approximation).

∂ρ

∂t
+∇.(ρv) = 0 Continuity

∂v

∂t
+ (v.∇)v = −∇Φ Euler

∇2Φ = 4πGρ Poisson
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Fluid Equations in Comoving Coordinates

We want to work instead in comoving coordinates, r = a(t)x, and look at
perturbations to the density in the mass dominated,
ρ = 〈ρ〉(1 + δ) = (ρ0/a3)(1 + δ) and potential, ∇2Φ̂ = ∇2Φ− 4πG〈ρ〉a2.

Applying the chain rule gives the following substitutions

∇ → ∇
a

and
∂

∂t
→ ∂

∂t

)
x
− ȧx.

∇
a

and so the fluid equations become:

∂δ

∂t
+∇.ẋ +∇.(ẋδ) = 0 Continuity

ẍ + 2
ȧ

a
ẋ + (ẋ.∇)ẋ =

∇Φ̂
a2

Euler

∇2Φ̂
a2

= 4πG〈ρ〉δ Poisson
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Fourier Transformed Fluid Equations

Take the Fourier Transform of each term e.g.

δ =
∑

k

δke−ik.x

and using v to now denote the comoving velocity ẋ

∇.v = ∇.
∑

k

vke−ik.x =
∑

k

−ik . vke−ik.x.

The fluid equations become

∂δk

∂t
− ik.vk −

∑
k′

ik.vk−k′ δk′ e−ik.x = 0 Continuity

∂vk

∂t
+ 2

ȧ

a
vk −

∑
k′

i[vk′ .(k − k′)] vk−k′e−ik.x =
ikΦ̂k

a2
Euler

Φ̂k

a2
=
−4πG〈ρ〉δk

k2
Poisson
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Linearized Fourier Transformed Fluid Equations

If we make the linear approximation and discard terms that are second order in δ
and/or v we find

∂δk

∂t
− ik.vk = 0 Continuity

∂vk

∂t
+ 2

ȧ

a
vk =

ikΦ̂k

a2
Euler

Φ̂k

a2
=
−4πG〈ρ〉δk

k2
Poisson

Eliminate vk from Euler and Continuity equations and Φ̂k using the Poisson
equation gives

d2δk

dt2
+ 2

ȧ

a

dδk

dt
= 4πG〈ρ〉δk Linear Perturbation

Each k-mode evolves independently.
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Growing and Decaying Modes

The solution to the linear perturbation equation depends on the background
cosmology (Ω and Λ) through the dependence of 〈ρ(t)〉. For Einstein-de Sitter,
Ωm = 1, a ∝ t2/3 and

4πGρ0t
2
0 =

2
3
.

giving
d2δk

dt2
+

4
3

1
t

dδk

dt
=

2
3

δk

t2
.

Its general solution is
δk = Akt2/3 + Bkt−1

The Ak are the growing modes and Bk are the decaying modes.
To determine both one needs both initial densities, δk, and velocities vk.
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Zel’dovich Approximation

Generally we can ignore the decaying modes as even if they exist they decay away
at early times. Hence if we assume pure growing mode we only need the initial δk

to specify the initial conditions.

δk = Akt2/3 and vk = −2
3

ik

k2
Akt−1/3

Inverse Fourier Transforming

δ(q) =
∑

k

δk e−ik.q

v(q) =
∑

k

2
3
−ik

k2
Ak t−1/3 e−ik.q =

∑
k

2
3
−ik

k2

δk

t
e−ik.q

Integrating with time to get the corresponding displacement

∆q = t2/3
∑

k

−ik

k2
Ak e−ik.q =

∑
k

−ik

k2
δk e−ik.q
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Zel’dovich Approximation

These equations allow one to set up the initial conditions of an N-body simulation
by displacing particles from an initial grid of coordinates q by the displacements
∆q and the corresponding velocities v(q).

∆ ∆

q

v(q)v(q)

Sometimes particle positions are perturbed away from a random glass
configuration rather than a uniform grid.
Jenkins (2009) has extended these methods to 2nd order Lagrangian Perturbation
theory, allowing simulations to start at lower redshift.
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Linear and Nonlinear evolution

When all mode amplitudes |δk| � 1, mode coupling is negligible and all modes
grow at the same rate.

δk = δk,0 D(a).

In hierarchical models such as CDM small
scales go non-linear first. The non-linear power
spectrum differs from the initial linear shape
first on the smallest scales and then
progressively on larger scales. Here

∆2(k) = k3P (k)

is the matter power spectrum expressed in
dimensionless form. ∆2(k) is the contribution
to the variance in the density fluctuations from
each logarithmic interval of wavenumber
∆2(k) = dσ2/d ln k. (Jenkins et al 1998)
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The Cosmic Web

Nonlinear gravitational
evolution leads to the
formation of the Cosmic
Web, a network of sheets,
filaments, voids and
clusters. Within the
filaments are dense
virialized halos of dark
matter which flow along
the filaments and merge at
their intersections.
The growth of these dark
matter halos is
hierarchical.

MXXL: Angulo et al (2012)
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The Halo Mass Function

Dark matter halos which can be
identified with a number of group
finding algorithms are the locations
where galaxies and galaxy clusters form.
Thus an important basic statistic is the
number density of halos as a function of
their mass.
This evolves with time and depends on
the shape of the initial power spectrum,
but when expressed in terms of the
variance of the linear mass field is
essentially universal.

f(σ) =
M

ρ0

dn

d log σ
=

M

ρ0

dn

d log M

d log M

d log σ

Jenkins et al 2002
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Halo Merger Trees and Subhalos

Halos are not featureless monolithic
entities with NFW density profiles:

ρ(r) =
4r3

s ρs

r(rs + r)2

where the concentration c = r200/rs.
They contain substructure in the form of
subhalos which are remnants of their
hierarchical formation and that can be
identified by codes such as SUBFIND.
The hierarchical formation can be
described in terms of a merger tree .

Virgo Aquarius simulation AqA2
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The Halo Occupation Distribution (HOD)

Assuming galaxies reside in halos the simplest
way of populating a DM N-body simulation
with galaxies (of a particular type) is to specify
the Halo Occupation Distribution (HOD):
P (N |M).
The probability that a halo of mass M hosts N
galaxies (e.g. Weinberg & Berlind 2002). This
is normally specified in terms of the mean
number of satellites and central galaxies per
halo

and assuming the satellites number is Poisson
distributed about this mean. (There can only
be 0 or 1 central per halo).

Zehavi, Zheng, Weinberg ... (2011)
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The Halo Occupation Distribution (HOD)

Zehavi, Zheng, Weinberg ... (2011)

The observed galaxy clustering and its dependence on luminosity can be fit by an
HOD whose mean halo mass increases with luminosity.

This framework provides a very simple way of populating an N-body simulation
with a particular class of galaxies e.g. LRGs. All that is required is a simulation in
which the halos hosting the relevant galaxies are resolved.
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Subhalo Abundance Matching (SHAM)

The HOD technique ignores the differing formation histories of individual DM
halos and assumes galaxy properties only depend on halo mass. The SHAM
technique requires higher resolution simulations in which subhalos are resolved but
then makes use of the subhalo populations in individual halos.

van den Bosch

Abundance matching

ngal(> M∗) = nhalo(> Mhalo)

defines the relation M∗(Mhalo) or
L(Mhalo) between galaxy stellar
mass or luminosity and subhalo
mass.

For subhalos the mass used here is not the current mass of the subhalo but the
mass it had at infall. (Popular variants exist including using Vmax of the halo
rather than mass.)

Kravtsov et al 2004, Vale & Ostriker 2004, Conroy et al 2006, Moster et al 2010, Behroozi et al 2010
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Subhalo Abundance Matching (SHAM)

The parameter free (or one parameter is one allows scatter in the relation) SHAM
technique has been remarkably successful at modelling a large range of
observations.

Variants of the SHAM model now exist in which a second subhalo property is
correlated with a second galaxy property. E.g. at fixed luminosity and subhalo
mass galaxy colour is ranked against accretion redshift (Hearin & Watson 2013)
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Semi-Analytic Modelling

Here halo merger trees taken from DM
simulations are taken as the framework
in which to build an analytic model of
galaxy formation.

These models provide much more than
the statistical descriptions given by the
HOD and SHAM approaches. As well as
the location of each galaxy the model
provides the evolutionary history of each
galaxy and observable properties such as
broad band luminosities.

Cole et al 2000
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Semi-Analytic Modelling

Semi-analytic models include
prescriptions for:

Gas shock heating

Cooling and disk formation

Star formation

Stellar feedback

Galaxy mergers

Merger induced star bursts

AGN feedback

Chemical Evolution

Stellar Population Synthesis

Wechsler et al 2001
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Lightcone construction

Once an N-body simulation has been
populated by galaxies then one must cut
out the survey volume. The survey
might be deeper than the simulation
box, requiring the simulation to be
replicated.

Typically one should not neglect
evolution with lookback time. Hence the
galaxies should be extracted on the past
lightcone of the observer.

Thus there is an issue of how to
interpolate galaxy positions and
properties or deal with discontinuities.
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Lightcone construction

Bernyk et al 2014

Some constructors simply repeat the periodic structures in the way assumed
during the N-body calculation. Others rotate and shift the replicas to remove the
periodic structure at the expense of creating discontinuties.
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Simulated Images

Normally the output of these synthesized surveys is a mock catalogue listing
galaxy properties, but some now go further and create mock images (e.g. Bernyk
et al 2014 https://tao.asvo.org.au/tao/mock galaxy factory/ ). Ultimately these
can be used in end-to-end testing of data reduction pipelines (e.g. Euclid).
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Survey Selection Function

Selecting galaxies from the volume limited light cone that meet the selection
criteria for being included in the observational catalogue.

In principle this is easiest for the semi-analytic models as one can directly impose
the same observational criteria. However if the semi-analytic does not perfectly
reproduce the observed properties then this can produce large systematic
differences.

By construction, SHAM models match the observations for the galaxy
property(ies) that were abundance matched but in general these are not the
properties on which the observed catalogue was selected. One must additionally
model the relation between the SHAMed and observed property.

HOD models most naturally produce only volume limited catalogues. They are
mainly used to model volume limited subsets of an observed catalogue. (LRG
catalogues are close to volume limited.)
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Targeting Completeness

All modern multi-object spectrographs have targeting
limitations. In SDSS fibres could not be placed closer
than 55′′. In DESI the efficiency of targeting depends
on the target density and scale on which it fluctuates.

Mock catalogues can be used to test the efficiency of
various observing and targeting strategies, though this
can also be done using real data if the photometric
catalogue which will be targeted already exists.

Clustering analysis must employ a scheme which
attempts to compensate for the targeting
incompleteness. Mock catalogues are very useful for
testing the effectiveness and accuracy of such
schemes.

The 5000 fibre DESI focal plane
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Redshift Completeness

Map of the redshift completeness in 2dFGRS SGP strip

Targeting incompleteness is one contribution to redshift incompleteness. It is
relatively easy to correct for as for it one can assume the incompleteness is
independent of redshift, z.

More problematic is incompleteness due to redshift measurement failures. This will
correlate with the photometric properties of the galaxies (e.g. surface brightness)
and can depend directly on redshift (e.g. where emission lines overlap sky lines).
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Pros and Cons

Method Pros Cons
HOD Simple Does not provide galaxy properties

Does not need to resolve subhalos
SHAM Simple Needs to resolve subhalos

Does not provide all galaxy properties
Semi-analytic Provides all galaxy properties Complex

Hard to tune to match observations
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Summary

1 Mock galaxy catalogues are important in the planning, analysis and
exploitation of large scale galaxy redshift surveys.

2 They require exploiting state-of-the-art techniques and computers to generate
the necessary cosmological N-body simulations.

3 As it is not yet possible to simulate the physics of galaxy formation within
cosmological volumes, different techniques have to be used to “paint”
galaxies onto Dark Matter simulations.

4 Different compromises have to be made depending on the primary goal of the
mocks. E.g.

1 where large scale statistics is foremost, HOD population of low resolution
simulations;

2 where smaller scales and survey selection function is important SHAM models
of higher resolution simulations;

3 where clustering is used to test the physics of galaxy formation models one
needs semi-analytic models or full hydro simulations.
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Resources

Merson et al 2013 http://adsabs.harvard.edu/abs/2013MNRAS.429..556M
semi-analytic lightcome mocks

J. Carretero et al 2014 arXiv:1411.3286 mocks from the MICE simulations

Bernyk et al 2014 arXiv:1403.5270 provide a web interface to a system that
can generate tailor made mock catalogues https://tao.asvo.org.au/tao/
Theoretical Astrophysics Observatory

McBride et al LasDamas mocks http://lss.phy.vanderbilt.edu/lasdamas/

Chuang et al 2015 http://adsabs.harvard.edu/abs/2015MNRAS.446.2621C
EZ mocks using extended Zel’dovich approximation

Manera et al http://www.marcmanera.net/mocks/ PTHaloes galaxy mocks

Monaco et al 2013 http://adsabs.harvard.edu/abs/2013MNRAS.433.2389M
Pinnochio algorithm for generating dark matter halo catalogues

Ancient sets of 2dF and SDSS mocks http://astro.dur.ac.uk/˜cole/mocks/
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