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Abstract
A timely combination of new theoretical ideas and obser-
vational discoveries has brought about significant advances
in our understanding of cosmic evolution. In the current
paradigm, our Universe has a flat geometry, is undergoing
accelerated expansion and is gravitationally dominated by
elementary particles that make up cold dark matter. Within
this framework, it is possible to calculate the emergence
of galaxies and other structures from small quantum fluc-
tuations imprinted during an epoch of inflationary expan-
sion shortly after the Big Bang. I review the basic concepts
that underlie our understanding of the formation of cosmic
structure and some of the tools required to calculate it. Al-
though many unresolved questions remain, a coherent pic-
ture for the formation of cosmic structure in now beginning
to emerge. The notes associated with these lectures may be
found at http://star-www.dur.ac.uk/∼csf/homepage/GalForm lectures

1. INTRODUCTION

The origin of structure in the Universe is a central problem in Physics. Its solution
will not only inform our understanding of the processes by which matter became or-
ganized into galaxies and clusters, but it will also help uncover the identity of the dark
matter, offer insights into events that happened in the early stages of the Big Bang
and provide a useful check on the values of the fundamental cosmological parameters
estimated by other means.

The problem of the origin of cosmic structure is well posed because the initial
conditions – small perturbations in the density and velocity field of matter – are, in
principle, known from Big Bang theory and observations of the early Universe, while
the basic physical principles involved are understood. The behaviour of the dark
matter is governed primarily by gravity, while the formation of the visible parts of
galaxies involves gas dynamics and radiative processes of various kinds. The early
stages of evolution of the perturbations can be followed using linear theory, but the
late stages require large computer simulations. In this way, it is possible to follow the
development of structure from primordial pertubations to the point where the model
can be compared with observations.

Over the past few years, there has been huge progress in quantifying obser-
vationally the properties of galaxies not only in the nearby universe, but also in the
very distant universe. Since the clustering pattern of galaxies is rich with information
about physics and cosmology, much effort is invested in mapping the distribution of
galaxies at different epochs. Two large surveys, the US-based Sloan Digital Sky Sur-
vey [1] and the Anglo-Australian “2-degree field galaxy redshift survey” (2dFGRS)
[2], are revolutionizing our view of the nearby universe with order of magnitude in-
creases in the amount of available data. Similarly, new data collected in the past



decade or so have opened up the high redshift universe1 to detailed statistical study
[3].

The advent of large computers, particularly parallel supercomputers, together
with the development of efficient algorithms, has enabled the accuracy and realism
of simulations to keep pace with observational progress. With the wealth of data now
available, simulations are essential to interpret astronomical data and to link them to
physical and cosmological theory.

To build a model of large-scale structure, four key ingredients need to be speci-
fied: (i) the content of Universe, (ii) the initial conditions, (iii) the growth mechanism,
and (iv) the values of fundamental cosmological parameters. I now discuss each of
these in turn.

1.1 The content of the Universe

Densities are usually expressed in terms of the cosmological density parameter, Ω =
ρ/ρcrit, where the critical density, ρcrit, is the value that makes the geometry of the
Universe flat. The main constituents of the Universe and their contribution to Ω are
listed in Table 1.

Table 1. The content of the Universe

Component Contribution to Ω

CMB radiation Ωr = 4.7 × 10−5

massless neutrinos Ων = 3 × 10−5

massive neutrinos Ων = 6 × 10−2
(

<mν>
1ev

)

baryons Ωb = 0.037 ± 0.009
(of which stars ) Ωs = (0.0023 − 0.0023) ± 0.0003
dark matter Ωdm ' 0.26 ± 0.04
dark energy ΩΛ ' 0.70 ± 0.04

The main contribution to the extragalactic radiation field today is the cosmic
microwave background (CMB), the redshifted radiation left over from the Big Bang.
These photons have been propagating freely since the epoch of “recombination”,
approximately 300,000 years after the Big Bang. The CMB provides a direct ob-
servational window to the conditions that prevailed in the early Universe. The Big
Bang also produced neutrinos which today have an abundance comparable to that of
photons. We do not yet know for certain what, if any, is the mass of the neutrino, but
even for the largest masses that seem plausible at present, ∼ 0.1eV, neutrinos make
a negligible contribution to the total mass budget (although they could be as impor-
tant as baryons). The abundance of baryons, dark matter and dark energy can be
inferred, as discussed below, by combining data on inhomogeneities measured in the
CMB with data on galaxy clustering [4]. Independent estimates of Ωb can be obtained
with reasonable precision by comparing the abundance of deuterium predicted by Big
Bang theory with observations of the absorption lines produced by intergalactic gas
clouds at high redshift seen along the line-of-sight to quasars [5]. Baryons, the over-
whelming majority of which are not in stars today, are also dynamically unimportant
(except, perhaps, in the cores of galaxies).

1In cosmology, distances to galaxies are estimated from the redshift of their spectral lines; higher
redshifts correspond to more distant galaxies and thus to earlier epochs.
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Dark matter makes up most of the matter content of the Universe today. To
the now firm dynamical evidence for its existence in galaxy halos, even more direct
evidence has been added by the phenomenon of gravitational lensing which has now
been detected around galaxy halos (e.g. [6, 7]), in galaxy clusters (e.g. [8]), and
in the general mass field (e.g. [9] and references therein). The distribution of dark
matter in rich clusters can be reconstructed in fair detail from the weak lensing of
distant background galaxies in what amounts virtually to imaging the cluster dark
matter. Various dynamical tests give values of Ωdm ' 0.3, consistent with the CMB
estimates and also with other, independent determinations such as those based on
the baryon fraction in clusters ([10, 11]), and on the evolution in the abundance of
galaxy clusters ([12, 13]). Since Ωdm is much larger than Ωb, it follows that the dark
matter cannot be made of baryons. The most popular candidate for the dark matter
is a hypothetical elementary particle like those predicted by supersymmetric theories
of particle physics. These particles are referred to generically as cold dark matter or
CDM. (Hot dark matter is also possible, for example, if the neutrino had a mass of
∼ 5 eV. However, early cosmological simulations showed that the galaxy distribution
in a universe dominated by hot dark matter would not resemble that observed in our
Universe [14].

A recent addition to the cosmic budget is the dark energy, evidence for which
was first provided by studies of type Ia supernovae [15,16] 2. These presumed ‘stan-
dard candles’ can now be observed at redshifts between 0.5 and 1 and beyond. Those
at z (0.3 − 1) are fainter than would be expected if the universal expansion were
decelerating today, indicating that the expansion is, in fact, accelerating. Within the
standard Friedmann cosmology, there is only one agent that can produce an accel-
erating expansion. This is nowadays known as dark energy, a generalization of the
cosmological constant first introduced by Einstein, which could, in principle, vary
with time. The supernova evidence is consistent with the value ΩΛ ' 0.7. Further,
independent evidence for dark energy is provided by a recent joint analysis of CMB
data (see next section) and the 2dFGRS [30].

Amazingly, when all the components are added together, the data are consistent
with a flat universe, Ωtot = 1.

1.2 The initial conditions

The idea that galaxies and other cosmic structures are the result of the slow amplifi-
cation by the force of gravity of small primordial perturbations present in the mass
density at early times goes back, at least, to the 1940s [19]. However, it was only
in the early 1980s that a physical mechanism capable of producing small perturba-
tions was identified. This is the mechanism of inflation, an idea due to Guth [20],
which changed the face of modern cosmology. Inflation is produced by the domi-
nant presence of a quantum scalar field which rolls slowly from a false to the true
vacuum, maintaining its energy density approximately constant and causing the early
Universe to expand exponentially for a brief period of time. Quantum fluctuations
in the inflaton field are blown up to macroscopic scales and become established as
genuine adiabatic ripples in the energy density. Simple models of inflation predict
the general properties of the resulting fluctuation field: it has Gaussian distributed
amplitudes and a near scale-invariant power spectrum [21].

2The possibility that dark energy might be the dynamically dominant component had been antici-
pated by theorists from studies of the cosmic large-scale structure (see e.g. [17]), and was considered
in the first simulations of structure formation in cold dark matter universes [18].
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After three decades of ever more sensitive searches, evidence for the presence
of small fluctuations in the early universe was finally obtained in 1992. Since prior to
recombination the matter and radiation fields were coupled, fluctuations in the mass
density are reflected in the temperature of the radiation. Temperature fluctuations
in the CMB were discovered by the COBE satellite [22] and are now being mea-
sured with ever increasing accuracy, particularly by detectors deployed in long-flight
balloons [23, 24, 25]. The spectrum of temperature fluctuations is just what infla-
tion predicts: it is scale invariant on large scales and shows a series of “Doppler” or
“acoustic” peaks which are the result of coherent acoustic oscillations experienced
by the photon-baryon fluid before recombination. The characteristics of these peaks
depend on the values of the cosmological parameters. For example, the location of
the first peak is primarily determined by the large-scale geometry of the Universe and
thus by the value of Ω. Current data imply a flat geometry.

The spectrum of primordial fluctuations generated, for example, by inflation
evolves with time in a manner that depends on the content of the Universe and the
values of the cosmological parameters. The dark matter acts as a sort of filter, inhibit-
ing the growth of certain wavelengths and promoting the growth of others. Following
the classical work of Bardeen et al. [26], transfer functions for different kinds of dark
matter (and different types of primordial fluctuation fields, including non-Gaussian
cases) have been computed. In Gaussian models, the product (in Fourier space) of
the primordial spectrum and the transfer function, together with the growing mode
of the associated velocity field, provides the initial conditions for the formation of
cosmic structure.

1.3 Growth mechanism

Primordial fluctuations grow by gravitational instability: overdense fluctuations ex-
pand linearly, at a retarded rate relative to the Universe as a whole, until eventually
they reach a maximum size and collapse non-linearly to form an equilibrium (or
‘virialized’) object whose radius is approximately half the physical size of the pertur-
bation at maximum expansion. The theory of fluctuation growth is lucidly explained
by Peebles [27].

Although gravitational instability is now widely accepted as the primary growth
mechanism responsible for the formation of structure, it is only very recently that firm
empirical evidence for this process was found. Gravitational instability causes inflow
of material around overdense regions. From the perspective of a distant observer, this
flow gives rise to a characteristic infall pattern which is, in principle, measurable in a
galaxy redshift survey by comparing the two-point galaxy correlation function along
and perpendicular to the line-of-sight. In this space, the infall pattern resembles a
butterfly [28]. This pattern has been clearly seen for the first time in the 2dFGRS
[29]3.

1.4 Cosmological parameters

After decades of debate, the values of the fundamental cosmological parameters are
finally being measured with some degree of precision. The main reason for this is
the accurate measurement of the acoustic peaks in the CMB temperature anisotropy

3Strictly speaking the ‘butterfly’ pattern does not prove the existence of infall since the continuity
equation would ensure a similar pattern even if velocities were induced by non-gravitational processes.
However, it can be shown that such velocities, if present, would rapidly decay.
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spectrum whose location, height and shape depend on the values of the cosmological
parameters. Some parameter degeneracies exist but some of these can be broken us-
ing other data, for example, the distant Type Ia supernovae or the 2dFGRS (eg. [30]).
The CMB data alone do not constrain the Hubble constant, but these data combined
with the 2dFGRS give a value, in units of 100 km s−1 Mpc,−1, of h = 0.68±0.07, in
agreement with results from the HST key project [31], and other methods. In addition
to h and the other parameters listed in Table 1, the other important number in studies
of large-scale structure is the amplitude of primordial density fluctuations which is
usually parametrized by the quantity σ8 (the linearly extrapolated value of the top-hat
filtered fluctuation amplitude on the fiducial scale of 8 h−1 Mpc). The best estimate
of this quantity comes from the observed abundance of rich galaxy clusters which
gives σ8Ω

0.6 = 0.5, with an uncertainty of about 10% [32, 33, 34].
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2. THE FRIEDMANN MODEL

This section provides is a very brief review of the main equations that describe the
evolution of the mean properties of the universe.

The separation of two points can be written as

r = a(t)x (2.1)

where x is the comoving separation and is constant for two points moving with the
mean expansion; a is the scale factor (a = 1 today) and is related to redshift z by
a = 1/(1 + z).

On large scales, the Universe is expanding. The relative velocity of two co-
moving objects, u, is proportional to their physical separation, r, by:

u = H(t)r (2.2)

The Hubble parameter, H , is uniform in space and is expressed as:

H0 = 100hkm/s (2.3)

where h is measured to be h = 0.73 ± 0.06.
Differentiating (2.1) wrt time:

u ≡ ṙ = ȧx =
ȧ

a
ax =

ȧ

a
r (2.4)

which, from (2.2), implies
H =

ȧ

a
(2.5)

The evolution of H is described by Einstein’s equations:
(

ȧ

a

)2

+
kc2

a2
=

8π

3
Gρ +

Λc2

3
(2.6)

and
ä

a
= Ḣ + H2 = −4πG

3

(

ρ +
3P

c2

)

+
Λc2

3
(2.7)

where a is the expansion factor of the universe, k the curvature, ρ the mass-energy
density, Λ the cosmological constant and H = ȧ/a is the Hubble constant. These
dynamical equations relate the velocity and acceleration of the Universe to its matter
content of density ρ and pressure p. The equation of state is:

p = wρc2 (2.8)

For radiation, w = 1/3. The cosmological constant is often regarded as a scalar field
with w = −1. Current observations require a non-zero value of Λ.

The 1st law of thermodynamics, dU + pdV = 0, implies that:

dρ

dt
+ 3H

(

ρ +
P

c2

)

= 0 (2.9)

which can be easily integrated to show that for non-relativistic (cold) matter, ρm ∝
a−3, whereas for relativistic particles or radiation, ρr ∝ a−4.
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Setting ρ = ργ + ρm in (2.6),

Ωm + Ωγ + ΩΛ = 1 + k

(

c

aH

)2

(2.10)

where the cosmological density parameter, Ω = ρ/ρcrit, where ρcrit = 3H2/8πG
and

Ωm =
8π

3H2
Gρm, Ωγ =

8π

3H2
Gργ , ΩΛ =

Λc2

3H2
(2.11)

denote the contributions from matter, radiation and cosmological constant. The con-
stant k describes the curvature of the Universe and can be 0 or ±1. Observations of
fluctuations in the cosmic microwave background suggest k = 0. (For most of this
course, we will consider only the k = 0 model.) In this case.

Ωm + Ωγ + ΩΛ = 1 (2.12)

The relative importance of the three at different epochs may be seen by writing
ΩΛ

Ωm
=

ΩΛ0

Ωm0
a3, etc and then writing one of the Ωs eg Ωm as:

Ωm =
Ωm0

Ωm0 + a−1Ωγ0
+ a3ΩΛ0

(2.13)

From this, we see that the Universe goes through three stages of evolution:
• Radiation-dominated for a∼<1.4 × 10−4

• Matter-dominated for 1.4 × 10−4∼<a∼<0.8

• Λ-dominated for a∼>0.8

It is a mystery why we live so close to the transition from matter to Λ-domination
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3. THE GROWTH OF DENSITY FLUCTUATIONS – LINEAR THEORY

3.1 Linear Fluctuations

To study the evolution of linear perturbations, we write the density, pressure and
velocity fields, ρ(r, t), P (r, t) and u(r, t), as a mean value plus an initially small
fluctuation:

ρ(r, t) = ρ(t) + δρ(r, t) = ρ(t)(1 + δ(r, t)), (3.1)

where δ = δρ/ρ
P (r, t) = P (t) + δP (r, t)

u = H(t)r + v(r, t) (3.2)

where v is the peculiar velocity. For linear fluctuations, δ � 1 and v � Hr.

3.2 The fluctuation growth equation in the non-relativistic regime

For an ideal, non-relativistic fluid, the equations of conservation of mass and momen-
tum are:

∂ρ

∂t
+ ∇ · (ρu) = 0 (3.3)

∂u

∂t
+ u · ∇u = −∇P

ρ
−∇Φ (3.4)

where Φ is the gravitational potential which, for a self-gravitating fluid, is given by
Poisson’s eqn:

∇2Φ = 4πG(ρtot +
3Ptot

c2
) − Λc2 (3.5)

where the suffix tot indicates that all matter contributes to the gravitational potential
whereas the conservation equations apply separately to the baryonic fluid and also to
any component of non-baryonic dark matter. (Note that for radiation, 3Ptot/c

2 = ργ

so in the last equation, the P term is related to ργ ). (For a derivation of the fluid
equations, see eg Binney & Tremaine Galactic Dynamics).

Substituting (3.1) and (3.2) into (3.3) gives

ρ̇(1 + δ) + ρδ̇ + ρ∇ · ((1 + δ)(Hr + v)) = 0 (3.6)

Using ∇ · r = 3 , the non-perturbative terms in this equation reduce to (2.9) with
P/c2 = 0 (which is appropriate for a non-relativistic fluid). Thus, the linear equation
relating the terms of first order in δ and v/Hr is:

δ̇ + Hr · ∇δ + ∇ · v = 0. (3.7)

Similarly, from (3.4), using the fact that ∇r is the identity matrix,

Ḣr +
∂v

∂t
+ (Hr + v) · (H + ∇v) = −∇(P + δP )

ρ(1 + δ)
−∇(Φ + φ) (3.8)

where φ ≡ δφ is the perturbative part of the potential, Φ = Φ + φ. The non-
perturbative part of this equation is:

Ḣr + H2r = −∇P

ρ
−∇Φ (3.9)
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which, upon taking the divergence and using (3.5), gives:

3Ḣ + 3H2 = −4πG(ρ +
3P

c2
) + Λc2 (3.10)

which is the same as (2.7). The first order terms give:

∂v

∂t
+ Hv + Hr · ∇v = −∇δP

ρ
−∇φ (3.11)

where φ is the perturbative part of Φ:

∇2φ = 4πG(δρtot +
3δPtot

c2
) (3.12)

Eqns (3.7) and (3.11) can be simplified by using comoving coordinates, ie by chang-
ing from (r, t) → (x, t′), where r = ax and t′ = t. We have:

∂

∂t

∣

∣

∣

r
=

∂

∂t′

∣

∣

∣

x

∂t′

∂t

∣

∣

∣

r
+

∂

∂x

∣

∣

∣

t

∂x

∂t

∣

∣

∣

r
(3.13)

Now,
∂x

∂t

∣

∣

∣

r
= −xaȧ

a2
(3.14)

so
∂

∂t

∣

∣

∣

r
=

∂

∂t′

∣

∣

∣

x
− Hx

∂

∂x

∣

∣

∣

t′
(3.15)

Similarly
∂

∂x

∣

∣

∣

t
=

∂

∂r

∣

∣

∣

t′

∂r

∂x
= a

∂

∂r

∣

∣

∣

t′
(3.16)

ie
∇x = a∇r (3.17)

Eqns (3.7) and (3.11) then become:

∂δ

∂t

∣

∣

∣

r
+ Hr · ∇δ + ∇ · v =

∂δ

∂t

∣

∣

∣

x
− Hx

∂δ

∂x

∣

∣

∣

t
+ Hr · ∇δ + ∇ · v = 0

→ ∂δ

∂t

∣

∣

∣

x
+ ∇r · v = 0 (3.18)

and
∂v

∂t

∣

∣

∣

x
+ Hv = −∇rδP

ρ
−∇rφ (3.19)

To obtain our final equation, take the divergence of (3.19) and the time derivative of
(3.18) and combine the two. This gives:

∂2δ

∂t2

∣

∣

∣

x
+ 2H

∂δ

∂t

∣

∣

∣

x
=

∇2
rδP

ρ
+ ∇2

rφ (3.20)

where
∇2

rφ = 4πG(δρtot +
3δPtot

c2
) (3.21)

Note:
• Eqn (3.20) applies to any component of non-relativistic (cold) matter (P � 1

3
ρc2);

δ refers to fluctuations in density and δP in pressure
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• δρtot and δPtot , on the other hand, are the sources of perturbation in the gravita-
tional potential and so refer to the sum of all components of matter.
• The 2H ∂δ

∂t term is a cosmological drag term. It is the only term where the expansion
of the universe comes in. Thus, the Hubble expansion tends to dampen fluctuations.
Without this term, fluctuations would grow exponentially; with it, growth is a power-
law at best.

3.3 Solution for cold matter (dust)

We will now solve (3.20) for the case where pressure fluctuations are zero. This is
known as the “dust solution” and corresponds to cold matter. Write:

ρtot = ρm + ρr (3.22)

and set δPtot = 0. Then, δρtot = δρm ≡ ρmδ. (Note that δρr = 0 because we are in
the non-relativistic regime, so ρr contributes to ρtot but is not perturbed.) Eqn (3.20)
becomes:

δ̈ + 2Hδ̇ = 4πGρmδ (3.23)

where the dot denotes the time derivative at constant x. Using (1.12), we can write
this as

δ̈ + 2Hδ̇ − 3

2
H2Ωmδ = 0 (3.24)

Let us consider the solution in 3 different situations:
• Matter-dominated case, Ω ' Ωm ' 1. This is the most important case since
it describes the Universe since recombination until almost the present day. Setting
Ω = 1 in (2.11), we have H2 ∝ ρm ∝ a−3, from which it is easy to show that
H = 2

3t . Substituting in (3.24),

δ̈ +
4

3t
δ̇ − 2

3t2
δ = 0 (3.25)

The general solution is:

δ = A(x)t2/3 + B(x)t−1 (3.26)

where A and B are constants. The first term is known as the “growing” mode and
the second as the “decaying” mode. The latter may be neglected since any decaying
modes generated in the early universe will become negligible by the time of recom-
bination. It is usual to normalize the growing mode to the value it would have today
if the fluctuation had been growing at the linear rate:

δ = δ0(x)

(

t

t0

)2/3

= δ0(x)a (3.27)

• Λ-dominated; ΩΛ ' 1 (Ωm ' 0). Although the Universe has not yet reached this
state, it is rapidly approaching it. Eqn (2.11) gives H 2 = Λc2πG

3
= const, so (3.24)

gives

δ̈ + 2Hδ̇ = 0 (3.28)
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whose solution is
δ = A(x) + B(x)e−2Ht (3.29)

Thus, the growing mode is no longer growing, but has frozen in at a constant value.
• General case; Ωm + ΩΛ = 1. We will not attempt to solve this here, but a feel for
the solution may be obtained by combining the two previous results. We write:

δ = δ0(x)ag(a,Ωm0) (3.30)

where g(a,Ωm0) is a correction factor that modifies the simple scaling of the Ω = 1
case. The factor g is constant at early times (Ω → 1) and scales as 1/a at late
times (ΩΛ → 1). For Ωm = 0.33, one can show that g → gi = 1.25 as a →
0. Thus, fluctuations in the matter distribution have grown by less than a factor
of 1

1.25arec
' 800 since recombination. Since the cosmic microwave background

radiation indicates that fluctuations in the baryon distribution at recombination had
amplitude of less than 10−4, the existence of non-linear structures today (δ > 1)
implies that the growth of fluctuations must have been driven by non-baryonic dark
matter which was not relativistic at the epoch of recombination, trec, and does not
couple to the radiation. After trec, the baryons decouple and are free to fall into the
dark matter potential wells.

3.4 The Meszaros effect

A perturbation in a collisionless, non-relativistic mat-
ter component (eg cold dark matter) experiences re-
duced growth during the period when the Universe
is dominated by a relativistic component, eg radia-
tion. To see this, let us consider eqn (3.20) for a non-
relativistic matter component, which we will take to
have P = δP = 0 (i.e. cold dark matter). The to-
tal mean density is ρtot = ρnr + ρr (with ρr > ρnr).
The perturbed (non-relativistic) density is δnr = δρnr.
The relativistic (radiation) field is assumed to be uni-
form, δr = 0, so δρtot = δnr = δρnr. Eqn.(3.20) then
becomes (droping the overbars in ρ, etc for clarity):

δ̈ + 2Hδ̇ − 4πGρnrδ = 0 (3.31)

This is just like eqn.(3.23), but now we are inter-
ested in finding a solution which applies in both the
radiation-dominated and matter-dominated regimes, and
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Fig. 1: The correction factor g and linear growth factor δ as functions of expansion factor a, for density
perturbations in a spatially flat universe dominated by cold matter and a cosmological constant.

12



in the transition between them. This means that both
H and ρnr have more complicated dependences on
a than for the matter-dominated regime assumed in
eqn.(3.25).

Changing variables to

y =
ρnr

ρr
=

a

aeq
(3.32)

where aeq is the expansion factor at the epoch of mat-
ter - radiation equality. Using the Friedmann equation
(2.6) with k = 0, Λ = 0 and ρ = ρnr + ρr and setting
d
dt = ȧ d

da, eqn (3.31) becomes:

d2δ

d2y
+

2 + 3y

2y(1 + y)

dδ

dy
− 3y

2y(1 + y)
= 0. (3.33)

which, as usual, has a growing and a decaying solu-
tion. The growing solution is

δ+ ∝ 1 +
3

2
y (3.34)

Before zeq (y < 1), the growing mode is practically
frozen. The total growth in the interval t = 0 − teq is

δ+(y = 1)

δ+(y = 0)
=

5

2
(3.35)

After zeq, the solution rapidly matches the growth rate
in a matter-dominated Einstein-de-Sitter model,

δ+(y >> 1) ∝ y ∝ a ∝ t2/3 (3.36)

Physically, the explanation for the Meszaros ef-
fect is this. At early times, the dominant energy in
radiation drives the Universe to expand so fast that
the matter has no time to respond and δ is frozen.
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As the radiation becomes negligible, growth increases
smoothly to the behaviour appropriate in an Einstein-
de-Sitter universe.
3.5 Fluctuations in a baryon universe

Consider fluctuations in the baryon distribution which
we will take to be a perfect fluid. Assume that the
fluctuations are adiabatic, ie that the cooling time is
long compared with the age of the Universe. Then,
δP = c2

sδρ, where cs is the sound speed. The pressure
is greater in overdense regions and this impedes the
growth of the fluctuation. The Jeans mass is derived
by comparing the relative strength of gravitational and
pressure forces acting on a perturbation. If, for an
adiabatic perturbation, we write:

δP ∝ δρ ∝ eik·x (3.37)
then,

∇2
rδP =

1

a2
∇2

xδP =
c2
s

a2
∇2

xδρ = −k2c2
s

a2
δρ (3.38)

Substitute in (3.20), setting δρ = ρδ:

δ̈ + 2Hδ̇ = −k2c2
s

a2
δ + 4πG



ρδ + 3
(cs

c

)2
ρδ





We now suppose that the redshift is low enough that
baryon density exceeds the radiation density (ρb �
ρr). This implies that cs � c, so that we can ignore
the last term on the RHS, leading to

δ̈ + 2Hδ̇ =





4πGρ − k2c2
s

a2





 δ (3.39)

Fluctuations can only grow if RHS is positive. This
can be seen, for example, by trying a solution of the
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form δ ∝ eiwt. The resulting algebraic equation is
called the dispersion relation. For fluctuations to grow,
w must be imaginary and this requires the RHS of the
equation to be positive. Thus fluctuations grow only
if their physical wavelength, λ = 2πa

k , is greater than
the Jeans wavelength:

λJ = cs





π

Gρ





1/2

(3.40)

corresponding to masses greater than the Jeans mass:

MJ =
4π

3
ρb





λJ

2





3

=
1

6
πρb





cs





π

Gρ





1/2






3

(3.41)

Note:
• This result is also valid for static clouds (Hubble
drag term only slows down the rate of collapse) and
can be used, for example, to determine the stability of
molecular clouds in the Galaxy.
• The Jeans mass is defined for any mass component
of density ρm (eg baryons, CDM, etc), but the mean
density that comes into the Jeans length, ρ, includes
all gravitating components.
• At the epoch of matter-radiation equality, zeq , ρnr =

ρnr0(1 + z)3 is equal to ρr = ρr0(1 + z)4. This then
gives zeq = 2.6× 104Ωm0h

2. At this epoch, the sounds
speed is

(

∂P
∂ρ

)1/2
= c√

3
and eqn (3.35) gives,

MJ = 3.5 × 1015(Ωm0h
2)−2 M� (3.42)

• Using values appropriate for the period after recom-
bination (and recalling that ρ ∝ ρ ∝ a−3 and T ∝
c2
s ∝ a−1) gives:

MJ ' 5a−3/2 M� (3.43)
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3.6 Evolution of superhorizon perturbations

3.6.1 The horizon size and mass

So far, we have used Newtonian dynamics. In
principle, fluctuations can have a wavelength larger
than the horizon and, in this case, the Newtonian treat-
ment breaks down. In fact, fluctuations generically go
through a phase when they are larger than the hori-
zon. We will not worry about the technical issue of
whether the relevant horizon is the particle horizon
(Rhorizon) or the Hubble radius (RH), ie the radius of
the speed-of-light sphere, where

RH =
c

H
, (3.44)

Rhorizon and RH differ only by a factor of order unity.
Physically, RH is the typical size over which physical
processes can operate coherently. Throughout most of
the Universe’s evolution, a(t) ∝ tn with n < 1. Now,
H = ȧ/a ∝ t−1 and RH ∝ t. Thus, RH grows faster
than proper length (r ∝ a ∝ tn).

Example: Calculate the proper size today correspond-
ing to the horizon at teq, the epoch at which the den-
sity in matter and radiation were equal. How does this
compare with the Hubble radius today.
The epoch at which the density in matter and radiation
are equal is:

1 + zeq ' 2.6 × 104Ωm0h
2 (3.45)

corresponding to

teq ' 104(Ωm0h
2)−2 yrs (3.46)
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where the contribution of 3 species of neutrinos has
been included in the radiation density. Thus,

RH(teq) =
c

H0

teq
t0

' 1.4× 1020 m (' 5kpc) (3.47)

A region of proper radius RH(teq) at teq would today
be

req(z = 0) = RH(teq)(1 + zeq) ' 100(Ωm0h
2)−1 Mpc

(3.48)
which is much smaller than the Hubble radius today
(' 3000 h−1 Mpc).

Consider a perturbation of proper size λ, with λ <

RH today. As we go back in time, the proper radius
of this region shrinks as a(t) ∝ tn, with n < 1. But
the Hubble radius of the universe decreases as t, ie
faster. Thus, there will a time, t = tenter(λ), when the
proper radius of the perturbation will equal RH . For
t < tenter, this proper radius will be larger than the
Hubble radius. We usually say that the lengthscale λ

“enters the horizon” at tenter(λ)

In analogy with the Jeans mass, define the horizon
mass as:

MH =
1

6
πρR3

H (3.49)

where ρ = ρm + ρr. The baryonic part of this is:

MHb =
1

6
πρbR

3
H (3.50)

Recalling that, for a flat, radiation-dominated universe,

H =
1

2t
(3.51)
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Fig. 2: Evolution with time of the proper size of a density perturbation λ and of the Hubble radius RH ,
showing “horizon entry” at time tenter .

and
ρr =

3

32πGt2
(3.52)

then, at teq,

MH(teq) =
c3

4G
teq ' 5 × 1014(Ωm0h

2)−2M� (3.53)

3.6.2 The Growth of superhorizon perturbations

To calculate the evolution of perturbations with
λ > RH , we need GR. However, we can take a short-
cut that gives the correct answer. Regard the pertur-
bation as a slightly closed (positively curved) universe
superposed on a flat (k = 0) universe with the same
expansion rate. The Friedman equation (2.6) gives

H2 =
8π

3
Gρ0 (k = 0) (3.54)
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where the subscript 0 denotes the k = 0 case (not t =

t0!). Now consider a Friedmann model with the same
expansion rate, H , but higher density ρ = ρ1, so that
it is positively curved:

H2 =
8π

3
Gρ1 −

k

a2
1

(3.55)

Let’s compare these two (when the expansion rate is
equal: the “Hubble flow condition”). The density con-
trast is then

δ ≡ ρ1 − ρ0

ρ0
=

k/a2
1

8πGρ0/3
(3.56)

If δ << 1, then a1 and a0 differ only by a small
amount and we can set a1 ' a0 ≡ a. Since ρ0 ∝
a−4 in the radiation-dominated epoch while ρ0 ∝ a−3

in the matter-dominated era, we find that fluctuations
outside the horizon grow as:

δ ∝ a−2

ρ
∝











a2 for t < teq
a for t > teq

(3.57)
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4. THE EVOLUTION OF INDIVIDUAL PERTURBATIONS

4.1 Adiabatic and isothermal perturbations

The radiation energy density is ρrc
2 = σrT

4, where σr

is the radiation constant and the radiation pressure is
Pr = ρrc

2/3. Thus, the entropy of radiation per unit
volume is given by

Sr =
ρrc

2 + Pr

T
=

4

3

ρrc
2

T
=

4

3
σrT

3 (4.1)

The entropy per unit mass is therefore

S ∝ T 3

ρm
∝ ρ3/4

r

ρm
(4.2)

There are two basic types of perturbations: adia-
batic or curvature perturbations and isothermal or en-
tropic perturbations. A perturbation that leaves S in-
variant is called adiabatic. It consists of perturbations
in both the matter density, ρm and the radiation den-
sity, ρr (or equivalently, the radiation temperature T ).
Thus:

δS

S
=

3

4

δρr

ρr
− δρm

ρm
= 3

δT

T
− δρm

ρm
= 0

so
δm ≡ δρm

ρm
= 3

δT

T
=

3

4

δρr

ρr
≡ 3

4
δr (4.3)

A perturbation in the matter component only, δm 6=
0, keeping the radiation component uniform is called
an entropic or isothermal perturbation. (These are re-
lated to isocurvature fluctuations). During the radi-
ation era, isothermal fluctuations in the baryons do
not grow because of the strong frictional drag between
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matter and the uniform radiation field. After recombi-
nation, perturbations in the matter evolve in the same
way regardless of whether they are adiabatic or isother-
mal initially. If perturbations are produced by “micro-
scopic” physics, then we expect them to be adiabatic.

4.2 Perturbations in the dark matter

Consider the evolution of a perturbation in the dark
matter (DM), of proper wavelength λ ∝ a, which
enters the horizon at a = aenter. DM particles can
be relativistic at early times; their velocity dispersion,
v ' c for a < anr (where anr is the expansion fac-
tor at which the particles cease to be relativistic.) For
a > anr, the velocity decays as v ∝ a−1 (because
the DM behaves like an adiabatically expanding fluid:
the entropy S ∝ T/ρ2/3 ' const ⇒ T ∝ v2 ∝ ρ2/3 ∝
a−2 ⇒ v ∝ a−1. Alternatively: PV 5/3 = const ⇒
ρTa5 ∝ Ta2 = const ⇒ T ∝ v2 ∝ a−2)

We can calculate the Jeans length and mass for
the dark matter from eqns (3.34) and (3.35). Recall
that ρ in these equations refers to the gravitationally
dominant component, ρtot. For a < aeq, ρtot = ρr ∝
a−4; for a > aeq, ρtot = ρm ∝ a−3. Also, for dark
matter v plays the role of the sound speed, cs ' v.
Thus, the Jeans length (3.34) is:

λJ ∝ v

ρ1/2
∝



























a2 for a < anr

a for anr < a < aeq

a1/2 for aeq < a

(4.4)

If a perturbation enters the horizon when the dark mat-
ter is still relativistic, then that perturbation is quickly
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damped because of free streaming: the particles which
are moving at relativistic speeds in 3D simply move
out of the high density part of the perturbation which
is then erased.

The most relevant perturbations are those that en-
ter the horizon between anr and aeq. There are 3 stages
in the evolution of such a perturbation.
STAGE A: a < aenter

Here λ > λH, so perturbation grows. From (3.57),

δ ∝ a2 (4.5)
STAGE B: aenter < a < aeq

Now λ < λH. However, the perturbation cannot grow
because of the Mesźaros effect, so

δ = const (4.6)
STAGE C: aeq < a

Still λ < λH. If λ > λJ , the perturbation can grow, so
from (3.27),

δ ∝ a (4.7)
We can also express the evolution in terms of the Jeans
mass:

MJ ∝ ρDMλ3
J ∝



























a3 for a < anr

const for anr < a < aeq

a−3/2 for aeq < a

(4.8)

which can be compared with the horizon dark matter
mass:

MH ∝ ρDMd3
H ∝



























a2 for a < anr

a3 for anr < a < aeq

a3/2 for aeq < a

(4.9)
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Fig. 3: Evolution with expansion factor a of the Jeans mass for the dark matter.

From these scalings, we can compute MJ(z) using the
definition of (3.35). For example, for cold dark matter,
MJ ' 106(Ωm0h

2)−2(a/aeq)
−3/2M� for a > aeq.

4.3 Perturbations in the baryons

Let abr be the epoch of baryon-radiation equality, ie
when ρb = ρr. This is given by:

1 + zbr =
ρ0

b

ρ0
r

= 3.9 × 104(Ωb0h
2) (4.10)

Since zrec ' 1100, zbr > zrec only if Ωb0h
2 > 0.026.

Current data indicate that Ωb0h
2 ' (0.023 ± 0.002)

so, most likely, zbr < zrec. However, since the two
redshifts are so close, we will make the approximation
zbr ' zrec

For a < arec, we have ρ = ρb + ρr + ρDM and P =

23



Pr + Pb ' Pr = 1
3ρrc

2. Thus, (assuming ρb/ρr << 1),
the adiabatic sound speed for the baryons is:

c(a)
s =





∂P

∂ρ





1/2

S

=
c√
3

(4.11)

because the baryons are coupled to the radiation that
contributes the pressure. Thus, we have the following
2 regimes:

c(a)
s =



















c√
3

= 1.7 × 108 ms−1 for a < arec
(

γkT
mp

)1/2
= 5 × 105

(

1+z
1+zrec

)1/2
ms−1 for arec < a

(4.12)
where we have assumed γ = 5/3 and T ' Trec =

4000oK. (In reality, Tb ' Tr only for z ≥ 300; af-
ter that and until the universe is reionized by stars
and quasars, Tb ∝ (1 + z)2.) The sound speed plum-
mets from ∼ 108ms−1 before recombination to ∼ 5 ×
105ms−1 just after recombination, as the radiation pres-
sure ceases to act on the gas and the baryons can ex-
perience only gas pressure.

Following the same reasoning as for DM, we find:

MJb ∝ ρbλ
3
J ∝



























a3 for a < aeq

a3/2 for aeq < a < arec

const for arec < a

(4.13)

Thus, for example, from (4.12) and (3.35),

MJb = 3.2×1014




Ωb0

Ωm0



 (Ωm0h
2)−2







a

aeq







3

M� for a < aeq

(4.14)
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Fig. 4: Evolution with expansion factor a of the Jeans mass for the baryons.

and, directly from (4.12),

MJb = 5×104




Ωb0

Ωm0



 (Ωm0h
2)−1/2M� ' constant for arec < a

(4.15)
(MJb remains constant as long as Tb ' Tr; thereafter
the behaviour is roughly proportional to (1 + z)3/2).
An adiabatic perturbation with λ > λJb(aeq) behaves
just like a perturbation in the dark matter:

δb ≡




δρ

ρ





b

∝



























a2 for a < aenter

const for aenter < a < aeq

a for aeq < a

(4.16)

Adiabatic perturbations λ < λJb(rec) during the epoch
aenter < a < arec oscillate as acoustic waves with
sound speed c(a)

s and constant amplitude. During these
oscillations, photons have enough time to diffuse out
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of fluctuations with M < MD(t) << MJb where

MD ' 8×107




Ωb0

Ωm0





3/2

(Ωm0h
2)−5/4







1 + z

1 + zeq







−15/4

M�,

(4.17)
so no baryon fluctuations below this mass survive. At
recombination,

MD(zrec) ' 6.2 × 1012




Ωb0

Ωm0





3/2

(Ωm0h
2)−5/4M�,

(4.18)
Note:
• Baryon perturbations with λ < λJb can only grow
after arec, but perturbations in the dark matter can grow
from aeq. During this time, perturbations in the DM
grow by a factor (arec/aeq) ' (Teq/Trec) ' 21Ωm0h

2.
When baryons decouple at recombination, they quickly
“fall into” the potential wells created by the DM. Thus,
δb grows rapidly for a short time after arec until it
catches up with δDM. Thereafter both grow as a.
• We have assumed Ω = 1. If Ω 6= 1, only the pe-
riod a > arec is affected. As we saw in §3.3, when
Ω 6= 1, fluctuations eventually stop growing when the
universe begins to expand too fast. One can show that
growth stops when Ωm0z ' 1 ie for z ≤ 1

Ωm0
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5. THE POWER SPECTRUM OF DENSITY FLUCTUATIONS

In this section, we collect the results of the preceeding
section to arrive at a simple statistical description of
the density and velocity fluctuation fields.

5.1 Mathematical background

The density field, δ(x, t), can be written as a sum of
plan waves in Fourier space:

δ(x, t) =
1

(2π)3

∫

δk(k, t)eik·xd3k

δk(k, t) =
∫

δ(x, t)e−ik·xd3x (5.1)
It is easy to see that one integral is the inverse of the
other by using the definition of the Dirac delta, δD,

∫

ei(k−k
′
)·xd3x = (2π)3δD(k − k

′
) (5.2)

where
∫

δD(x)d3x = 1 (5.3)
and

∫

f(x)δD(x − x′))d3x = f(x′) (5.4)
Using these relations, it is straightforward to show
that:

∫ ∫

f(k)eik·xd3xd3k = (2π)3f(0) (5.5)
The fact that δ(x, t) averages to zero, < δ(x, t) >= 0,
implies that δk(0) = 0.

δk is usually assumed to be a Gaussian random
field which means that the waves have random phases.
In this case, the field can be specified entirely by its
variance or power spectrum:

P (k) ≡ |δk(k)|2 (5.6)
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For an isotropic distribution, the power spectrum, av-
eraged over all possible realizations, must be indepen-
dent of direction, < P (k) >= P (k). Often, P (k) is
approximated as

P (k) ∝ kn (5.7)
In practice, P (k) is not a power-law, ie n varies with
scale.

The density and mass fluctuation within a region
of volume V is defined as:

δρ

ρ
=

δM

M
=

1

V

∫

δ(x)d3x (5.8)

If δk is Gaussian, so is δM/M . The average density
fluctuation (averaged over the whole of space) is zero:

〈δM

M

〉

= 0 (5.9)
It is (relatively) easy to find the mean squared value
of δM/M :

σ2(M) =
〈





δM

M





2〉

=
1

(2π)3Vu

∫

P (k)W (k; V )d3k

(5.10)
where W is the window function:

W (k; V ) =





1

V

∫

V
eik·xd3x





2

(5.11)

(Those who wish to derive (5.10), need to use eqn. (5.2)
after multipling and dividing the integrand of σ2(M)

by eik·xeik
′·x0, where x0 is the variable over which the

spatial average is being taken.)
For a spherical volume of radius x, it can be shown

that:
W =

9

(kx)6
[sin(kx) − kxcos(kx)]2 (5.12)
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The exact form of the window function is not crucial.
For a finite volume, W always tends to one at small k

(large scales; because wavelengths much larger than
the smoothing length contribute in full) and tends to
zero at large k (small scales; because wavelengths
much smaller than the smoothing length do not con-
tribute). Often W is approximated by a sharp cut-off
in k-space:

W (kx) =











1 for kx ≤ 1

0 for kx > 1
(5.13)

With this approximation, and assuming P (k) as in (5.7):

σ2 ∝
∫ 1

x

0
knd3k ∝





1

x





3+n

∝ M−(3+n
3 ) (5.14)

since M ∝ x3, provided n > −3. We will express the
present-day value of σ, assuming linear evolution, as:

σ ≡ σ0





M

M0





−α

α =
3 + n

6
(5.15)

This gives the relative amplitude of fluctuations on
different scales according to linear theory. Of course,
σ scales with time in the same way as δ, ie as in (4.14):

σ = σ0ga (5.16)

5.2 Dark matter power spectra

Density perturbations are thought to be generated by
quantum fluctuations during inflation. These are adi-
abatic, Gaussian perturbations. As the universe in-
flates, the perturbation is stretched beyond the hori-
zon. Once inflation ends, however, perturbations even-
tually re-enter the horizon. By self-similiarity argu-
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ments, when they do so, they all have the same ampli-
tude, independently of wavelength (or mass). Smaller
fluctuations re-enter the horizon first.

Let us compute the shape of the power spectrum
at some time, say, trec. Consider a fluctuation that en-
ters the horizon in the matter-dominated regime. Since
σ ∝ δ, σH/σrec = aH/arec, where the subscript H

refers to horizon crossing. Thus,

σrec = σH
arec

aH
= σH





trec
tH





2/3

(5.17)

where σH =const (ie independent of mass). During
this time, the horizon mass scales as

MH ∝ ρH(ctH)3 ∝ tH (5.18)

because ρ ∝ t−2 in the matter-dominated regime. Since
at aenter, M ' MH ,

σrec ∝ t
−2/3
H ∝ M−2/3 (5.19)

Comparing with (5.15), 3+n
6 = 2

3, so

α =
2

3
or n = 1 (5.20)

This is called the Harrison-Zeldovich spectrum, P (k) ∝
k.

Density fluctuations cannot grow during the radiation-
dominated era and so the power spectrum is main-
tained at the value at horizon crossing. Thus σ →
const and, from (5.16), α → 0, so n → −3. It is usual
to write

P (k) = T 2(k)k (5.21)
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where T (k) is the transfer function.
For cold dark matter (CDM), a fitting formula

is:

TCDM(k) =
ln(1 + 2.34q)

2.34q
[1+3.89q+(16.1q)2+(5.46q)3+(6.71q)4]−1/4

(5.22)
where

q =
k

Γ
h−1Mpc (5.23)

and the shape parameter Γ:

Γ = Ωm0h (5.24)

Hot dark matter (HDM) corresponds to the case
where the dark matter particles are still relativistic at
matter-radiation equality. In this case, the dark matter
particles free-stream out of the perturbations as soon
as they come into the horizon and so fluctuations are
erased until such time as the particles cease to be rel-
ativistic. The cut-off wavelength is,

λFS ∝ m−1
X (5.25)

where mX is the mass of the hot dark matter particle.
A fitting formula for HDM is:

ΓHDM(k) ' e−3/9q−2.1q2 (5.26)

The power spectrum (or, more precisely, k3|δk|2) for
CDM and HDM is shown in Figure 5.

Accurate transfer functions may be obtained us-
ing the programme on

http://www/physics.nyu.edu/matiasz/CMBFAST/cmbfast.html

31



Fig. 5: The linear power spectra for cold dark matter and hot dark matter.
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6. THE COSMIC MICROWAVE BACKGROUND (CMB)

The discovery of fluctuations in the CMB by COBE
in 1992 is one of the most important discoveries in
XX century science. These fluctuations are a mani-
festation of the density fluctuations that give rise to
galaxies. They connect the physics of the very early
universe to the universe of galaxies and give us infor-
mation about events during inflation and about the na-
ture of the dark matter. In this section, we will explain
the origin and significance of the recent data obtained
by the WMAP satellite.

6.1 The angular power spectrum

The CMB temperature distribution on the celestial sphere
can be expanded in spherical harmonics:

T (θ, φ) − T0

T0
≡ ∆T (θ, φ)

T
=

∞
∑

l=0

m=+l
∑

m=−l
almYlm(θ, φ)

(6.1)
where T0 is the mean CMB temperature. This is anal-
ogous to the Fourier expansion of δ.

The l = 0 mode (monopole) gives the mean tem-
perature; l = 1 (dipole) is mostly due to the motion
of our galaxy in (' 600km/s) produced by local mass
fluctuations (Coma cluster, Great Attractor, etc); l = 2

(quadrupole) and higher modes are produced by in-
trinsic anisotropies produced either at trec (primary)
or between trec and t0 (secondary).

The multipole l is related to the angle on the sky
by:

θ ' 600

l
(6.2)
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for l > 0.
The angular power spectrum (analogous to P (k))

is:
Cl ≡< |alm|2 > (6.3)

The autocorrelation function is defined as:

C(θ) =<
∆T

T
(n̂1)

∆T

T
(n̂2) > (6.4)

where cosθ = n̂1 · n̂2 and the average is over the en-
semble of possible skies. Since we have only one sky,
we use the ergodic hypothesis: we can replace an av-
erage over realizations with an average over different
patches of a single realization. (But this is not possi-
ble on large scales, where measurements are limited
by cosmic variance.) Using the addition theorem for
spherical harmonics,

Pl(cosθ) =
4π

2l + 1

∞
∑

m=−l
Ylm(θ, φ)Y ∗

lm(θ′, φ′) (6.5)

where Pl is the Legendre polynomial, it is easy to
show that:

C(θ) =
1

4π

∞
∑

l=2
(2l + 1)ClPl(cosθ) (6.6)

6.2 Primary anisotropies

There are 3 basic effects occuring at the surface of last
scattering:
1. Gravitational (Sachs-Wolfe) perturbations: pho-
tons from high density regions at last scattering have
to climb out of potential wells and are thus redshifted.
2. Intrinsic (adiabatic) perturbations: in high baryon
density regions, the coupling of matter and radiation
compresses the radiation also, giving rise to high T .
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3. Velocity (Doppler) perturbations: the velocity of
the plasma at recombination produces Doppler shifts
in frequency and thus in temperature.

A full treatment requires solving the Boltzmann
eqn. (which is what CMBFAST does).

6.21 The Sachs-Wolfe effect

This is the dominant contribution to ∆T/T on large
scales. Density fluctuations generate fluctuations in
the gravitational potential, δφ. Photons emitted from
a potential well need to climb out and are subject to
(a) gravitational redshift and (b) time dilation (we see
photons at different times or values of a). To calculate
these exactly we need GR, but we can get an approxi-
mate answer. Firstly, note that:

δφ ' δ





GM

r



 = −GM

r2
δr = −GM

r





δr

r



 (6.7)

and also that φ ' GM/r ∼ c2 when a perturbation
comes inside the horizon. The gravitational redshift
causes a change of wavelength λ. Since the radiation
is very nearly black body, λ ∝ 1/T . Thus,
(a) ⇒





∆T

T



 = −δλ

λ
= −δr

r
=

δφ

c2
(6.8)

The time dilation is due to the fact that photons
emerging from a fluctuation are delayed relative to
photons in an unperturbed region. Thus, using





∆T

T



 =
δa

a
=

2

3

δt

t
(6.9)

Since δt
t = δr

r = −δφ
c2

, then
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(b) ⇒




∆T

T



 = −2

3

δφ

c2
(6.10)

so, the net effect is:




∆T

T



 =
1

3

δφ

c2
(6.11)

6.22 Adiabatic perturbations

For adiabatic fluctuations, eqn (4.3) ⇒
∆T

T
=

1

3

δρ

ρ
(6.12)

6.23 Doppler perturbations

Density fluctuations induce streaming motions. This
produces a ∆T because some electrons are moving
towards the observer when they last scatter the radia-
tion and others are moving away. From the continuity
eqn., δρ/t ∼ ρ∇ · v ∼ ρv/λ, so

∆T

T
' −∆λ

λ
= −v

c
' δρ

ρ





λ

ct



 (6.13)

The Sachs-Wolfe effect dominates for scales ≥ 1

Gpc (ie larger than the horizon at trec); Doppler effects
take over for scales ≤ 1Gpc, but are soon dominated
by adiabatic effects on the smallest scales.

The horizon scale at trec corresponds to l ' 100−
200. On these scales an acoustic peak is produced.
This was first detected from ballon-borne measure-
ments and has now been confirmed by the WMAP
data. The peak results from the acoustic oscillations
of sub-Jeans mass fluctuations in the photon-baryon
fluid prior to trec. These standing waves have a phase
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Fig. 6: The CMB temperature power spectrum measured by WMAP. The top plot shows the T-T corre-
lation and the bottom plot the T-P correlation, where P is the polarization.

relation between density and velocity. When the Uni-
verse recombines, waves interfere constructively giv-
ing rise to the peak and its harmonics.

The physical lengthscale at which the first peak
occurs corresponds to the size of the sound horizon,
RSH ' cstrec at the surface of last scattering. This is
approximately fixed in all cosmological models. How-
ever, the angular scale subtended by RSH depends on
cosmology via the angular diameter-distance relation.
For a flat universe, the peak occurs at l ' 200. For
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a positively curved universe, the angle subtended is
larger, so the peak appears at smaller l. For a nega-
tively curved universe, the angle subtended is smaller,
so the peak appears at larger l. Thus, the position of
the peak gives an estimate of Ωtot. WMAP data give
Ωtot = 1.00±0.02. The properties of the various peaks
depend on other cosmological parameters in a com-
plicated fashion. The Cls measured by WMAP can be
used to estimate the values of these parameters. Re-
markably, the WMAP data agree very well with pre-
dictions of the CDM theory made in the early 1980s!
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Fig. 7: Effect of spatial curvature on angular size of sound horizon at recombination.
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7. THE SPHERICAL TOP HAT MODEL

The general non-linear solution for the evolution of
density perturbations is complicated. However, we
can obtain a simple solution for a spherically symmet-
ric system. We will derive this solution and then use
it to estimate the collapse times of objects from the
linear density field. We will assume that we are in the
matter-dominated regime which is the regime relevant
to galaxy formation. However, the arguments can be
generalized to include radiation and/or a cosmological
constant.

7.1 The spherical top-hat

For a spherically symmetric distribution of matter, Birkhoff’s
theorem from General Relativity says that the gravita-
tional attraction on a test particle at radius r is Gm/r2

where m is the matter contained within that radius -
the attraction of matter outside that radius averages to
zero.

The equation of motion is therefore

r̈ = −Gm

r2
. (7.1)

This equation has parametric solution

r = rt sin2 θ

t =







r3
t

2Gm







1
2

(θ − 1

2
sin 2θ). (7.2)

as may be verified by direct substitution. Here rt is
the maximum, or turnaround radius which occurs for
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θ = π
2 , ie at a time

tt =
π

2







r3
t

2Gm







1
2

=





3π

32Gρt





1
2

, (7.3)

where ρt is the average density within radius rt at
turnaround (ρt = M/(4

3
πr3) = ρ + δρ).

Note that the relation between θ and t depends
only upon ρ, so that if we start off with a uniform den-
sity perturbation, then it will remain uniform. This is
the basis of the top-hat model. Note:
• If we surround the top-hat with vacuum out to the ra-
dius at which the mean density becomes equal to the
background density, then the perturbation becomes in-
visible to the exterior universe - this is known as the
Swiss-cheese model
• More realistically, the peak will be surrounded by
matter which will fall onto it at late times - this is
known as secondary infall.
• It is not necessary for ρ to be uniform in order for
equations (7.2) and (7.3) to hold. For a typical bowler-
hat profile, the central regions of a radially-declining
density profile will collapse first.
7.2 Relation to linear theory

In linear theory, from equation (3.30), we have

δ = δ0ga ≈ δ0gi





t

t0





2
3

, (7.4)

where g ∼ gi ≈ 1.25 in the matter-dominated regime
and t0 is the current age of the Universe. We can
rewrite this equation in terms of r by noting that

ρr3 =
3m

4π
= constant, (7.5)
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whence
ρ̄0r

3
0 = (ρ̄ + δρ)r3 = ρ̄(1 + δ)r3, (7.6)

where ρ̄0 and r0 refer to the density and radius that
the spherical region would have had today if it had
zero overdensity, ie r0 is the radius of the sphere today
from which matter at the mean density ρ̄0 would need
to be swept up in order to produce the perturbation δ.
Solving for r and keeping only linear terms gives

r = r0





ρ̄0

ρ̄





1
3

(1 + δ)−
1
3

= r0





t

t0





2
3









1 − 1

3
δ0gi





t

t0





2
3









, (7.7)

where we have used the fact that ρ̄ ∝ t−2 in the matter-
dominated regime. (There should be a correction term
for the deviation from matter-domination at late times,
but this is unimportant for the argument that follows.)

Eqn (7.7) gives r(t) to first order in linear the-
ory. Equations (7.2) give the full solution in paramet-
ric form. The strategy is to match these two solutions
in the linear regime in order to derive the conditions
for collapse. We first expand the full solution of the
spherical collapse problem, equation (7.2), for θ � 1

to obtain the corresponding expression for the linear
growth of the spherical top-hat.

sin θ = θ − 1

6
θ3 +

θ5

120
· · ·

⇒ r = rtθ
2(1 − 1

3
θ2 + · · ·) (7.8)

t =







r3
t

2Gm







1
2




θ − 1

2





2θ − (2θ)3

6
+

(2θ)5

120
− · · ·
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=







r3
t

2Gm







1
2 2

3
θ3(1 − 1

5
θ2 + · · ·)

⇒ θ3 =







2Gm

r3
t







1
2 3t

2
(1 +

1

5
θ2 + · · ·) (7.9)

Now
m =

4π

3
ρ̄0r

3
0 =

2r3
0

9Gt20
, (7.10)

because in the matter-dominated era,

ρ̄0 =
3H2

0

8πG
=

1

6πGt20
. (7.11)

Substituting (7.10) in (7.9),

θ3 =





r0

rt





3
2




t

t0



 (1 +
1

5
θ2 + · · ·) (7.12)

and then substituting this back into (7.8) gives

r = r0





t

t0





2
3

(1 − 1

3
θ2 + · · ·)(1 +

1

5
θ2 + · · ·)2

3

= r0





t

t0





2
3

(1 − 1

5
θ2 + · · ·)

r = r0





t

t0





2
3









1 − 1

5





r0

rt









t

t0





2
3

+ · · ·








. (7.13)

Comparing (7.7) and (7.13), we see that to get the cor-
rect linear growth, we have to make the identification

rt =
3

5δ0gi
r0 (7.14)

7.3 Halo properties

Equation (7.14) is the basic relation used to calculate
the properties of protogalactic halos. It relates the ra-
dius at turnaround to the radius and density normal-
ized at some early time when the evolution was linear.
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In practice, we use the current day (comoving) radius,
r0, of the sphere that contains the same mass as the
perturbation but at the mean density, and the current
overdensity, δ0, assuming that the evolution were lin-
ear.

The time at maximum expansion, or turnaround,
equation (7.3), can be expressed using (7.10) and (7.14)
as

tt =
π

2







r3
t

2Gm







1/2

=
π

2

3

2





rt

r0





3/2

t0 =
3π

4





3

5δ0gi





3/2

t0

(7.15)
which, from eqn. (7.4) corresponds to a linear over-
density of

δt = δ0gi





tt
t0





2/3

=
3

5





3π

4





2/3

' 1.06. (7.16)

The actual density at this time is ρt = m/r3
t and the

mean density is ρ̄t = m
r3
0

(

t
t0

)−2 so the density contrast
is

ρt

ρ̄t
=













r0

(

tt
t0

)2/3

rt













3

=





3π

4





2

' 5.55 (7.17)

At the time of maximum expansion, the kinetic
energy of a top-hat density perturbation is zero. De-
noting the kinetic energy by T and the potential en-
ergy by V , we have

Tt = 0 Vt = −3

5

Gm2

rt
(7.18)

The collapse of the perturbation, if it is perfectly smooth,
is a time-reversal of the expansion and therefore the
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collapse time is
tc = 2tt (7.19)

corresponding to a linear overdensity

δc = δt





tc
tt





2/3

=
3

5





3π

2





2/3

' 1.69 (7.20)

This result is often used when calculating the num-
ber density of collapsed halos given a particular linear
density field.

In practice, the collapse will not be perfectly uni-
form and small irregularities will grow. The fluctu-
ations in the gravitational potential mix up the parti-
cles and lead to virialization. This gives two equations
relating the kinetic and potential energies of the col-
lapsed object. Firstly, conservation of energy,

Tc + Vc = Tt + Vt = Vt (7.21)

and secondly, the virial theorem,

2Tc + Vc = 0 (7.22)

Together, these give

Vc = 2Vt (7.23)

The usual assumption is that V α 1/r, so using (7.14),

rc =
1

2
rt =

3

10δ0gi
r0 (7.24)

and
ρc

ρ̄c
=













r0

(

tc
t0

)2/3

rc













3

= 18π2 (7.25)

⇒
ρc

ρ̄c
' 178 (7.26)
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Despite the naı̈vety of its derivation, (7.26) matches
the observed density contrast of virialized systems in
N-body simulations, as well as the inferred density
contrast of galaxy and galaxy cluster halos.

We can now determine the mean properties of galac-
tic halos. A halo of comoving linear overdensity δ0

will collapse to form a virialised structure when its
overdensity reaches δc. This occurs at an expansion
factor

ac =
1

1 + z
=

δc

δ0gi
(7.27)

at which time the radius, mean density and velocity
dispersion of the halo are

rc =
3

10δ0gi
r0 '

0.18

1 + zc
r0 (7.28)

ρc = 18π2ρ̄c ' 180(1 + zc)
3ρ̄0 (7.29)

σ2 =
2Tc

3m
=

1

5

Gm

rc
' 2.8(1 + zc)Gρ̄0r

2
0 (7.30)

In each of these expressions we can convert from co-
moving size to mass using the relation 3 m = 4πρ̄r3

0.

7.4 Scaling laws for galactic halos

Let us assume a power-law relationship between lin-
ear overdensity and mass for typical perturbations that
will go on to form galaxies,

δ0 ∝ 1 + zc ∝ m−α (7.31)

where α > 0. On galactic scales the observed value
is α ≈ 1

3. Then (since r0 ∝ m1/3), equations (7.29)
and (7.30) give the scaling laws:

rc ∝
r0

1 + zc
∝ mα+1/3 (7.32)
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ρc ∝ (1 + zc)
3 ∝ m−3α (7.33)

σ2 ∝ r2
0(1 + zc) ∝ m2/3−α (7.34)

These scaling laws hold true for any self-similar scal-
ing hierarchy even if we do not assume the top-hat
model - only the constants of proportionality will change.

Equation (7.33) tells us that more massive galactic
halos have lower mean densities (because they form
later when the Universe has a lower density). If we as-
sume a constant mass-luminosity ratio then the obser-
vations tell us that for elliptical galaxies ρ α m/r3 α m−1

which agrees with the expectation that α = 1
3
,

Similarly, Equation (7.33) reproduces the Faber-
Jackson relation, L α σ4, for a constant mass-luminosity
ratio for α = 1

6, which is slightly lower than ob-
served.

We can also establish a scaling relation that is in-
dependent of the mass-luminosity ratio. Eliminating
m from (7.32) and (7.33),

rc ∝ σ
2(3α+1)
2−3α . (7.35)

Observations of elliptical galaxies indicate that Re α σ8/3

which is consistent with the result above for α ≈
0.24, slightly lower than 1

3 but not far off.
Thus this simple model does a good job of ex-

plaining the basic properties of elliptical galaxies. Things
do not work so well for spiral galaxies but that is not
surprising because the luminosity of the disc is a poor
indicator of the mass of the halo.

The above scaling laws give a single parameter
family of galaxies (for each mass there is a unique
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radius) whereas we know that ellipticals form a two-
parameter family that lie on the fundamental plane.
This can be recovered by allowing a range of density
fluctuations for a given mass, δ α ν m−α.
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