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Chapter 1

Introduction

The interstellar medium (ISM) is the stuff between the stars, and consists
of gas (from highly ionised over neutral to molecular), dust (solid particles),
radiation and magnetic fields, and cosmic rays. These different components
interact with stars and the large-scale dynamics of the spiral disk in many
complex and not well-understood ways. For example star formation is made
possible because the molecules and dust allow gas to cool by converting ther-
mal energy to radiation. This is a crucial step in the huge increase in gas
density from typical ISM densities of ∼ 1 hydrogen atom per cm−3 to the
stellar density of ≥ 1023 cm−3. The dust grains are important in the chem-
istry of the ISM, regulating the formation of molecules. But the dust grains
themselves, and the elements they are made of, were synthesised in stars.
Just like the chicken and egg problem you may wonder what came first: dust
and molecules (to make stars), or stars that produced the elements that dust
and molecules are made of.

When the gas in a galaxy cools very rapidly its disk may become unstable
to star formation. The ensuing star burst and the associated powerful super
novae explosions, can then blow most of the ISM out of the galaxy. Star
formation is then halted, until the galaxy has accreted enough material from
its surroundings to become active again. Such bursty behaviour is seen in
numerical simulations of small galaxies, but also observationally when two
larger galaxies merge. In the Milky Way, star formation, and the feedback
from the associated super novae, seems to self regulate, and the MW is form-
ing stars at a very modest rate of a about 1-2 M� yr−1, as compared to the
102 − 103 M� yr−1 of starburst galaxies. Yet star formation may not have
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always been so gentle in the Milky Way: as compared to the Universe as a
whole, the Milky Way has lost a significant fraction of its baryons (compared
to its dark matter mass): presumably the MW was much wilder in its youth.

Interestingly several key processes in the physics of the ISM are far from
well understood. Although it is well established that most, if not all, MW
stars form in the Giant Molecular Clouds (GMCs) that line its spiral arms,
how the GMCs themselves form, and the physics that governs them, is hotly
debated. Some models of GMCs have them as long-lived entities held to-
gether by self-gravity, other models see them as transient structures swept-up
by the spiral density wave. The importance of magnetic fields, and cosmic
rays, is unclear. Curiously, the energy density of the gas, magnetic field, and
cosmic rays, are very similar: what is the origin of this equipartition? And
does it matter? Is the ISM of other galaxies similar to that of the MW or not?

The complexity of the ISM should not be an excuse to shy away from
its study. In particular if we want to study how stars form under differ-
ent conditions, for example in other galaxies, or at very high redshifts, we
should probably make sure we understand these processes locally, where the
observations are much more constraining. Most of these constraints come
from spectral analysis, where we can study the gas and dust in absorption
or emission. Therefore the interaction of matter with radiation is the central
theme of these notes. It is by understanding the relation between density,
temperature, abundance, radiation field, and the associated spectral signa-
tures, than we can try to constrain the physical and chemical properties of
the ISM. This will provide the data that any successful ISM model should
reproduce.

The study of the ISM has surprisingly personal dimensions. Most of the
mass of your own body (say in terms of O, C and Ca) was of course syn-
thesised in stars, and cycled through the ISM before it became part of you.
So: how many stars then did it take to make you? And when did these stars
form, and die? The ISM also contains surprisingly complex molecules, from
the popular C2H5OH to the much more complex RNA: may be the extreme
physical conditions of the ISM (very low densities as compared to the lab,
but high radiation fields) allow the fabrication of such building blocks of life?
And finally is earth not some rather larger than average dust grain?
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More reading: these notes rely heavily on Rybicki, G. B., & Lightman,
A. P. 1986, Radiative Processes in Astrophysics, Sun Kwok, Physics and
Chemistry of the Interstellar Medium, and J. E. Dyson & D. A. Williams,
The Physics of the Interstellar Medium.
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Chapter 2

Fundamentals of radiative
transfer

• Definitions of flux, intensity and their relation to energy density and
radiation pressure

• Proof of the constancy of intensity along a ray, and its relation to 1/r2

fall-off from a source

• Derivation and applications of the equation of radiative transfer

Further reading: Rybicki & Lightman, Chapter 1

2.1 EM-radiation

Electro-magnetic radiation is carried by photons, for which wavelength1 (λ,
[λ]= cm) and frequency (ν, [ν]=Hz) are related by

λ =
c

ν
, (2.1)

where by definition the speed of light c = 2.99792458×1010 cm s−1 in vacuum.
Regions of the spectrum are traditionally divided into wavelength ranges as
in Table 2.1. The quantum (photon) nature of the radiation can often be
neglected, in which case we describe radiation using the concepts of flux
and intensity, described below. The connection with Maxwell’s equations is
discussed later.

1We will use the notation [X] to denote the dimension of quantity X.
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log(λ/cm) ≤ −8.9 -6.1 -4.3 -4.1 -1.3 ≥ −1.3
name γ-rays X-rays UV Visible IR Radio

Table 2.1: Typical wavelength ranges for various EM radiation

2.2 Radiative flux

Luminosity
The luminosity L ([L]= erg s−1) of a source is the total amount of EM-energy
it radiates per unit time. Only bolometers can detect EM-radiation (almost)
independent of λ, therefore more useful is the luminosity emitted in a given
wavelength range L(ν) ([L(ν)]= erg s−1 Hz−1]), for example in the B-band2,
LB.

Flux
Consider a sphere of radius R centered on a source with luminosity L. The
energy per unit time passing through the surface area 4πR2 is L. The flux F
is the energy per unit area per unit time, so F = L/4πR2, or in the B-band,
FB = LB/4πR

2. In general the EM energy passing through any area dA per
unit time is

dE = FdAdt , (2.2)

where [F ]= erg s−1 cm−2.

Intensity
Flux is the energy carried by all rays through an area. Construct an area dA
normal to the ray, and consider all rays passing through dA within a small
solid angle dΩ. The energy dE passing through dA within this solid angle
(per unit time, per unit frequency) is

dEν = Iν dAdt dν dΩ , (2.3)

which defines the specific intensity or brightness Iν ([Iν ] = erg s−1 cm−2 ster−1

Hz−1), see Fig. 2.2. If dA makes an angle θ with the direction of the ray, then
dE = Iν cos θ dAdt dν dΩ. In general I depends on position, time, direction,
and frequency: we will usually suppress this dependence not to overburden

2See e.g. L2 course on observational techniques for definition of the various broad-band
filters
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Figure 2.1: The flux F is the energy passing through the area dA per unit
time, per unit area.

notations.

If I is independent of direction (isotropic radiation) then demonstrate
that the net flux ∝

∫
cos θ dΩ = 0. This is because for any direction n̂ there

is as much radiation passing the area dA in the +n̂ direction as in the −n̂
direction.

Momentum flux
Since E/c is the momentum of a photon with energy E, the momentum
carried through dA by the ray with intensity I, is

pν =
1

c

∫
Iν cos2 θ dΩ , (2.4)

where as before the ray strikes dA under the angle θ. We will later use the
symbol p to denote the radiation pressure: beware.

Energy density
Consider a cylinder with radius R, base area dA = π R2 and length l = c dt.
If the energy is moving perpendicular to dA, it will all cross dA in time dt,
hence

dEν = uν dA c dt dν dΩ = Iν dAdt dν dΩ (2.5)
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Figure 2.2: The energy carried by a ray in the solid angle dΩ perpendicular
to the area dA.

where

uν(Ω̂) =
Iν
c

(2.6)

is the energy density of radiation moving in direction perpendicular to dA.
Integrating over the full solid angle yields

uν =

∫
u(Ω̂) dΩ =

1

c

∫
Iν dΩ ≡ 4π

c
Jν , (2.7)

where

uν =
4π

c
Jν (2.8)

Jν =
1

4π

∫
Iν dΩ . (2.9)

This defines the energy density uν as well as the mean intensity Jν .

Radiation pressure
Consider radiation with intensity I in an reflecting enclosure. When a photon
with momentum p = E/c reflects off the enclosure, it transfer twice its
momentum to the mirror. Therefore the radiation pressure pν , is

pν =
2

c

∫
Iν cos2 θ dΩ . (2.10)
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For isotropic radiation Iν = Jν we integrate over half the total solid angle3

to get

pν =
1

3
uν . (2.11)

Constancy of I along a ray in empty space
Consider two areas, dA1,2, separated by distance D, such that all rays pass
through both areas. Energy conservation guarantees that the energy dE1

passing through dA1 also passes through dA2:

dE1 = I1 dA1 dt dΩ1 dν = dE2 = I2 dA2 dt dΩ2 dν . (2.12)

However, since dΩ1 = dA2/D
2, and dΩ2 = dA1/D

2, we find that I1 = I2,
that is the intensity along a ray is constant (in the absence of emission or
absorption). This does not conflict with the fact that the flux ∝ 1/D2:
consider the flux F received from an isotropic emitter (I = B, some constant)
with radius R? at distance D:

F =

∫
I cos θ dΩ

= B

∫ θc

0

cos θ sin θ dθ

∫ 2π

0

dφ

= π B sin2 θc

=
πB R2

?

D2
, (2.13)

where sin θc = R?/D is the maximum angle between the surface of R? and
the direction to the centre of the emitter. This also shows that the luminosity
of the emitter is L = 4 π2BR2

?.

2.3 Radiative transfer

The intensity of a ray can change due to emission, absorption and scattering.
We will neglect scattering for the moment.

3Why only half?
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Emission
Consider a cylinder with radius R, base area dA = π R2 and length ds. The
energy produced by emission within the volume dV = dAds is

dEν = jν dV dΩ dt dν , (2.14)

which defines jν , the emission coefficient ([jν ]=erg cm−3 ster−1 s−1 Hz−1). jν
will depend on the properties of the material within the cylinder, and also
defines the emissivity εν

jν =
εν ρ

4π
, (2.15)

where ρ is the mass density of the material. Emission then changes the
intensity of a ray as

dIν = jν ds . (2.16)

Absorption
Consider radiation with intensity I1 entering this same cylinder, and leaving
it at the other end. If there is absorption, the intensity I2 < I1, since E1 =
I1 dAdt dΩ dν > E2 = I2 dAdt dΩ dν. The amount of absorption I2 − I1
should be ∝ I1 ds, which defines the absorption coefficient αν ([αν ] = cm−1)
as

dIν = −αν Iν ds , (2.17)

with αν > 0. The optical depth, τν , is defined as

dτν = αν ds = −dIν
Iν

. (2.18)

An example is the absorption of light by solid spheres with radius r and
(constant) number density n. The number of such spheres in the cylinder is
N = nV , and the fraction of light blocked by them is N (π r2)/dA, the ratio
of the total area of all spheres over the base area of the cylinder. Therefore

I2
I1

= 1− N (π r2)

dA
= 1− n ds (π r2) = 1 +

dI

I1
, (2.19)

hence for such spheres

dI = −I n (π r2) ds

dτ = n (π r2) ds . (2.20)
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This is only valid if the spheres absorb all photons that strike them, which
will be a good approximation when r � λ = c/ν. When this is not true we
can write dτν = Q(ν)n (π r2) ds where Q describes the ratio of the actual
cross section for absorption over the geometric cross section of the sphere.

Stimulated emission, as occurs in a laser or maser, has dIν > 0 and hence
can be described as ‘absorption’ with αν < 0.

2.3.1 The equation for radiative transfer

When there is both emission and absorption, the equation for radiative trans-
fer becomes

dIν
ds

= −αν Iν + jν , (2.21)

or in terms of the optical depth dτν ,

dIν
dτν

= −Iν + Sν

Sν ≡ jν
αν

. (2.22)

Sν , the ratio of emission over absorption, is called the source function.

Emission only
For α = 0, the solution to dI/ds = j is

I(s) = I(0) +

∫ s

0

j(s′) ds′ . (2.23)

Absorption only
For j = 0, the solution to dI/ds = −α I is

I(s) = I(0) exp

(
−
∫ s

0

α(s′) ds′
)
. (2.24)
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General solution4

The formal solution for  6= 0 and α 6= 0 is

I(τ) = I(τ = 0) exp(−τ) +

∫ τ

0

exp(−(τ − τ ′))S(τ ′) dτ ′ , (2.25)

where s and τ are related by Eq. (2.18). Both j and α, and hence also source
function S(s), will in general depend on the value of the radiation there,
and the equation needs to be solved numerically. When S is constant, this
solution reduces to

I(τ) = I(0) exp(−τ) + S (1− exp(−τ)) . (2.26)

The intuitive answer is that both the incident radiation, I(0), and the emit-
ted radiation, are attenuated by the optical depth. A system with τ � 1 has
I ≈ I(0) is called optically thin, whereas when τ � 1, I(τ) ≈ S, the system
is called optically thick.

Mean free path
The function exp(−τν) can be thought of as the probability that a photon
travels a distance s(τν) before being absorbed. The mean optical depth at
which photons get absorbed is then

〈τν〉 =

∫ ∞

0

exp(−τν) τν dτν = 1 . (2.27)

The mean distance, 〈sν〉, the photon travels follows from 〈τν〉 = αν 〈sν〉 =
1, hence

〈sν〉 =
1

αν

=
1

nσν

, (2.28)

where the last equation is for particles with number density n and cross
section σν . We’ve assumed αν does not vary in space. 〈sν〉 is called the mean
free path

2.4 Exercises

1. Derive how much a given optical depth to a source changes its apparent
magnitude.

4Demonstrate as an exercise
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2. The ISM contains dust grains. Assume spherical grains with radius rd,
and mass density ρd. The abundance of grains is described in terms of
the dust-to-gas ratio, ψ = Md/Mg ≈ 10−3, the ratio of dust mass, Md,
over gas mass, Mg, per unit volume. Find an expression for the optical
depth toward the centre of a dusty cloud with radius R and uniform gas
density ρ, for given values of rd and ψ. Evaluate your answer for the
case rd = 0.1µm, ρd=1 g cm−3, nH = 102 and 103 cm−3 and R = 1 pc.
(nH is the hydrogen number density of the gas. Note that ρd is the
mass density of a single grain.) Would this value apply to IR photons?

3. Free electrons in a plasma scatter photons, with a cross section equal
to the Thomson cross section, σT . Compute the optical depth due to
Thomson scattering to the centre of a cluster of galaxies, using reason-
able values of electron density and cluster radius. (Assume a uniform
density cluster).

4. Similarly to the previous exercise, compute the Thomson optical depth,
as well as the optical depth due to dust, to the nearest star. (At distance
D = 1 pc, use a typical ISM density of nH=1 cm−3, ψ = 10−3 and the
same dust grain properties as in exercise 2.)

5. The intergalactic medium (IGM) at redshifts z ≤ 6 is observed to be
very highly ionised, presumably due to the combined radiation emitted
by galaxies and quasars. However we also know that the IGM became
(almost completely) neutral following recombination at z ∼ 103: this
implies that the IGM was reionised somewhere between z = 6 and
z = 103: we currently do not know when this important transition
happened. An ionised IGM will Thomson scatter CMB photons, and
there is a relation between the reionisation redshift zr and the Thomson
optical depth to the CMB, τr. Assume a uniform Universe with given
baryon fraction Ωb in units of the critical density Ωc. Derive the relation
between τr and zr and compute τr if zr = 9 for an Einstein-de Sitter
Universe.

[σT = 6.65250× 10−25 cm2]
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Chapter 3

Plasma effects

• Maxwell’s equations and their units

• plane waves in empty space

• plane waves in a plasma: conductivity, dielectric constant, dispersion,
plasma frequency, phase and group velocity, pulsar dispersion measure-
ments

• polarisation

• Faraday rotation

Further reading: Rybicki & Lightman, Chapter 2 and paragraphs 8.1 and 8.2

3.1 Maxwell’s equations

In Gaussian units, Maxwell’s equations (ME) that relate the electric field
(E) and magnetic field (B) to the charge density ρ and current (J) are

∇E = 4πρ (3.1)

∇B = 0 (3.2)

∇× E +
1

c

∂B

∂t
= 0 (3.3)

∇×B =
4π

c
J +

1

c

∂E

∂t
. (3.4)
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In these units, the electron charge e = 4.8× 10−10 esu. The Lorentz force
on a charge q moving with speed v is

F = q (E +
v

c
×B) . (3.5)

See the appendix of Jackson’s Classical Electrodynamics for a good introduc-
tion to the various choices of units of the ME.

3.1.1 Plane waves

Plane waves are solutions to Maxwell’s equations. Write the E component
of the wave as E(r, t) = E0 â0 exp (i (kr− ωt)) (and similarly for B), with
the understanding that the electric field is the real part of this complex ex-
pression.

(a) in empty space: ρ = J = 0
Substituting the Ansatz

E = E0 â0 exp (i (k · r− ωt)) (3.6)

B = B0 â1, exp (i (k · r− ωt)) , (3.7)

where E0 and B0, and â0,1 are all constants, into the ME yields the algebraic
relations

ik · E = 0 (3.8)

ik ·B = 0 (3.9)

ik× E− iω

c
B = 0 (3.10)

ik×B +
iω

c
E = 0 . (3.11)

These equations require (â0 â1,k) to be a right-handed triad, the amplitudes

E0 = B0 , (3.12)

and speed of the waves given by the dispersion relation

k2 c2 = ω2 . (3.13)

As expected, this solution is a transverse wave moving with speed c, the
speed of light. Since the ME are linear, any linear combination of such waves
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will be a solution as well. In particular star light will be a linear combina-
tion of many such monochromatic waves. The amount of energy carried by
the wave follows from application of the Poynting vector S = (c/4π)E×B:
hence the energy flux F ∝ |S| ∝ E2

0 .

(b) in a plasma
Making the same Ansatz in the more general case yields

ik · E = 4π ρ (3.14)

ik ·B = 0 (3.15)

ik× E− iω

c
B = 0 (3.16)

ik×B +
iω

c
E =

4π

c
J . (3.17)

We will consider a globally neutral plasma with electron density n, such
that the charge density1ρ = −n e, and the current associated with moving
electrons is J = −nev. The solution to the equation of motion for the
electron,

m v̇ = −eE (3.18)

if we neglect the B term (which is smaller by ∼ v/c) is2

v =
eE

i ω m
, (3.19)

and hence the current density defines the conductivity, σ, as

j = σE (3.20)

σ =
i n e2

ωm
. (3.21)

Substitution into the equation for charge conservation, ρ̇+∇J = 0, yields
ρ = σω−1 k ·E = 0. Application of the ME. ik ·E = 4πρ, yields i εk ·E = 0
where the dielectric constant ε, is

ε = 1− 4πσ

i ω
. (3.22)

1Why are we neglecting the protons?
2Demonstrate as an exercise.
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In terms of σ and ε, the ME now read

i εk · E = 0 (3.23)

ik ·B = 0 (3.24)

ik× E− iω

c
B = 0 (3.25)

ik×B +
iω

c
εE = 0 , (3.26)

similar to those in empty space apart from the appearance of ε. As before,
these describe a transverse EM wave, but the dispersion relation is modified
to

c2 k2 = ε ω2 , (3.27)

which shows that the speed of the wave now depends on ω, i.e. the plasma
is dispersive. In terms of the plasma frequency, ωp,

ω2
p ≡

4πn e2

m
(3.28)

the dispersion relation is
c2k2 = ω2 − ω2

p . (3.29)

Waves with ω < ωp have imaginary k = ikI , hence are exponentially damped,
E ∝ exp(−kI r). Presence of electron charge introduces a plasma cut-off
frequency ωp, below which the plasma does not allow radiation to propagate.
This causes the reflection of ∼ 1 MHz EM waves off the earth’s ionosphere
for example.

3.1.2 Group and phase velocity

The phase-velocity of a wave with ω = ω(k) is

vph ≡
ω

k
=

c

nr

, (3.30)

whereas the group velocity

vg ≡
∂ω

∂k
= c

(
1−

ω2
p

ω2

)1/2

. (3.31)
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In empty space these are the same, but in a plasma vg < c: this is the
speed with which the energy of the EM wave moves. The index of refraction
nr =

√
ε.

Application: pulsar timing measurements
A pulsar produces pulses of EM radiation with a range of frequencies ω.
Since the speed of each of its constituent waves depends on ω, the times, tp,
the various waves arrive on earth willl depend on ω, the distance d to the
pulsar, and on the properties of the ISM along the line of sight:

tp(ω) =

∫ d

0

ds

vg(s)
. (3.32)

For waves with ω � ωp, v
−1
g ≈ c−1

(
1 + ω2

p/2ω
2
)
, hence

tp(ω) ≈ d

c
+

4πe2

2ω2 cm

∫ d

0

n(s) ds . (3.33)

The first term is simply the time the EM would take in empty space, the
second depends on frequency. We can measure how the arrival time depends
on ω, dtp/dω, from which we can constrain the electron density to the pulsar,
or if we know n, the pulsar’s distance d:

dtp
dω

= − 4π e2

ω3 cm

∫ d

0

n(s) ds . (3.34)

3.2 Polarisation

3.2.1 Definitions and Stokes parameters

Light is said to be polarised if the plane in which its E vector lies (and hence
also B ⊥ E) is constrained, for example to a plane for linearly polarised light.
Consider the sum of two plane waves,

E = E1 + E2 , (3.35)

where the Eis are both monochromatic, ∝ exp(−iωt) , and complex (with the
convention that the physical electric field is the real part of the expression).
Assume the wave travels along ẑ, then without loss of generality we have

E1 = E1 exp (i(k z − ωt)) x̂ (3.36)

E1 = ε1 exp(iϕ1) , (3.37)
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and similarly for E2 ‖ ŷ. ε is the real amplitude of the wave, ϕ its phase. For
simplicity we can analyse the EM field at r = 0.

(a): no phase difference
If ϕ1 − ϕ2 = 0, the physical field is E = ε1 cos(ωt− ϕ) x̂ + ε2 cos(ωt− ϕ) ŷ,
which is a harmonically varying vector, moving in a plane under an angle β,
tan(β) = ε2/ε1 with the x̂ direction. This is a linearly polarised ray.

(b): phase difference = ±π/2
Assuming for simplicity that ϕ1 = 0, and ϕ2 = ±π/2, the physical field has

E = R [(ε1 x̂± i ε2ŷ) exp(−iωt)] (3.38)

= ε1 cos(ωt) x̂± ε2 sin(ωt) ŷ . (3.39)

Such a ray is called elliptically polarised, because the E vector traces-out
an ellipse with major/minor axis ε1,2. It is traced in anti-clockwise (clock-
wise) for φ2 = π/2 (−π/2): these are called right, respectively left-hand
polarised. The special case of ε1 = ε2 is called circularly polarised. In the
more general case where ϕ1 6= 0, the EM -wave is also elliptically polarised,
but the major/minor axes are not along our chosen x̂ and ŷ Cartesian axes.

The polarisation state of radiation is fully characterised by the following
four Stokes parameters

I ≡ ε21 + ε22 ‘intensity’ (3.40)

Q ≡ ε21 − ε22 ‘circularity’ (3.41)

U ≡ 2 ε1 ε2 cos(ϕ1 − ϕ2) (3.42)

V ≡ 2 ε1 ε2 sin(ϕ1 − ϕ2) . (3.43)

Given these definitions, I2 = Q2 +U2 +V 2, which expresses the fact that
monochromatic waves are always completely polarised. Most star light is not
monochromatic and in that case

Q2 + U2 + V 2

I2
≤ 1 (3.44)

is called the degree of polarization. Reflected light tends to be polarised,
hence the degree of polarisation can be used to judged whether light has been
scattered. For example light scattered off reflection nebulae is polarised.
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3.2.2 Application: Faraday rotation

Consider a circularly polarised beam of light moving parallel to a constant
magnetic field:

E = E0 (x̂∓ iŷ) exp(−iωt) (3.45)

B0 = B0 ẑ . (3.46)

The presence of the constant magnetic field introduces the cyclotron fre-
quency, ωB = eB0/m c. Neglecting the magnetic field associated with the
EM wave compared to the external one, yields the equation of motion for
the electrons:

mv̇ = −eE− e

c
v ×B0 , (3.47)

with solution3

v =
−i e

m (ω ± ωB)
E(t) . (3.48)

Compare to the previous case with B0 = 0, Eq. (3.19). We can follow the
derivation in that section to find that the dielectric constant is now given by

ε = 1−
ω2

p

ω (ω ± ωB)
, (3.49)

and is different for the two different polarisations (left and right-handed).
This means that the speed with which the polarised waves move, is different
for right and left-handed polarisations. A corollary is that the plane in which
linearly polarised light moves, will rotate as a function of position along the
line of sight, a phenomenon called Faraday rotation.

The angle over which the plane rotates can be found by realising that the
phase of the wave is given by ϕR,L =

∫ d

0
kR,L ds, where kR,L = (ω/c)

√
εR,L.

The angle ∆θ is just half of the difference in phase between R and L-handed
polarisation. Hence

∆θ =
1

2

∫ d

0

(kR − kL) ds (3.50)

≈ 2πe3

m2 c2 ω2

∫ d

0

n(s)B0(s) ds , (3.51)

3Check!
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where the approximation assumes ω � ωp and ω � ωB. It depends on the
integral of the product of electron density and magnetic field strength parallel
to the line of sight. We can constrain this integral by measuring ∂∆θ/∂ω, i.e.
how the plane of polarisation depends on frequency. This provides us with a
measure of the mean magnetic field along the line of sight if n is known, for
example from pulsar timing measurements.

3.3 Exercises

1. The spectrum of EM radiation received from a pulsar has arrival times
that depend on frequency as dtp/dω = 1.1 × 10−5 s2, and a Faraday
rotation measure ∂∆θ/∂ω = 1.9 × 10−4 rad s−1, both at ω = 108 Hz.
Determine the mean magnetic field strength B0 along the line of sight.
(From Rybicky & Lightman, Exercise 8.3)
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Chapter 4

Abundance evolution

• Stellar evolution of low mass stars (AGB), massive stars, and binary
stars, their element production and life-times

• s and r-process, supernova types

• Stellar initial mass function

• Evolution of abundances in a closed box system

• G-dwarf problem and its resolution

4.1 The production of the elements

Burbridge, Burbridge, Fowler & Hoyle (Synthesis of the elements in stars,
Burbridge et al., 1957) and independently Cameron (On the origin of the
heavy elements, Cameron 1957), published the first papers on the origin of
the elements, and Fowler received the Nobel prize for this in 1983, together
with Chandrasekhar. To what extent can what we know about stars and
their evolution explain the abundance of elements1 is the MW stars, or in
particular in the Sun as seen for example in Fig. 4.1?

1Commonly, yet erroneously, called chemical evolution.
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4.1.1 Basics of stellar structure & evolution

The structure of a star is governed by the equations of hydrostatic equilib-
rium and the equation of state of the stellar material, and makes in fact no
reference to energy production2. All three of density, temperature and pres-
sure increase towards the centre of the star. Given the Coloumb barrier, this
means that hydrogen fusion can only operate via quantum tunnelling in the
central ‘core’. Stars burning hydrogen there are Main Sequence stars, and the
main sequence life-time varies ∝ M/L ≈ M−2 given the strong dependence
L ∝Mα with α ≈ 3 between mass and luminosity. Massive stars hence have
short main sequence life-times.

When the fuel in the core is used-up, the star will contract and hence heat-
up. Sufficiently massive stars can start burning helium to carbon, and also
hydrogen to helium in a shell: these are Red Giants. Very massive stars can
keep going along this path of burning previous ashes at higher temperatures
following contraction, and end-up with a layers of more massive elements
towards their centres: this evolution stops once the cores gets converted to
Fe, for which the nucleons are most tightly bound (Fig. 4.2): fusion can then
no longer compensate for the energy the star loses through radiation. The
layered structure of such a star is depicted in Fig.4.3

4.1.2 AGB stars

Intermediate-mass stars with M ≤ 10M� build-up a C/O core following He
burning, surrounded by a He-burning shell, itself embedded in a H-burning
shell. In this Asymptotic Giant Branch stadium, the envelope is convective,
and pulsations driven by the He and H burning shells can convectively bring
core material to the surface in a process called dredge-up . Grains forming in
the cool envelope drive a strong wind, enriched with burning produce.

The shells are strong neutron sources, produced by C or Ne burning.
Neutrons are not hampered by a Coulomb barrier and their interaction with
nuclei builds various isotopes. An n-rich nucleus can change type by β-decay
if left enough time before being bombarded by neutrons again. Given that
the n-source is weak compared to that of a massive stars, this is the so called

2We will not discuss degenerate stars here.
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Figure 4.1: Abundances of elements for the Sun, normalised to that of Si.
Note the striking ‘odd-even’ pattern,

Figure 4.2: Binding energy per nucleon, from Alward.
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Figure 4.3: Structure of type II SNe progenitor, from www.hacastronomy.com
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Figure 4.4: Periodic table of the elements, from Los Alamos.

24



s-process (for slow), and the abundance patterns of stars such as the Sun as
shown in Fig. 4.1 was used to postulate its existence.

Most of the enriched mantle of AGB stars is flung into space reaching
its planetary nebula stage, and AGB stars are thought to produce a large
fraction of the low-mass elements, in particular about 1/2 of all C is thought
to be produced by AGB stars.

Note that very-low mass stars have such long life times that they do not
enrich the ISM at all: they are effectively sinks for both mass and metals.

4.1.3 Type II SNe

Type II supernovae are characterised by H-lines in their spectra, and they are
thought to be the end state of the evolution of massive stars, M ≥ 10M�.
In fact pre-explosion HST images of sites of type II SNe show indeed the
presence of a massive star where now we only see a super nova remnant.

These massive stars have shells of increasingly massive fuel ashes at in-
creasing depth, Fig.4.3. The burning produce typically differ by one α par-
ticle (or He-nucleus), and hence they are very alpha-rich; see Fig. 4.4. The
star is also a very strong neutron source, and this r (for rapid) process also
produces elements through β-decay as well as isotopes. Once the nucleus has
finished fusing to Fe the star has no more exothermic fusion options and the
core collapses.

Exactly how this starts a thermo-nuclear deflagration, i.e. an explosion
where the explosion itself produces more energy as it travels through the star
by fusion, is unclear, and numerical simulations model this by compressing
the material by hand. In fact, uncertainty of where the explosion actually
starts is one of the main uncertainties in computing the yields (i.e. how
much elements of each type are produced), together with the problem of ac-
curately resolving the burning front. The explosion releases a large fraction
of the initially α-enriched material in its surroundings, together with ele-
ments produced by fusion. In particular such explosions are thought to have
produced the more exotic elements such as for example uranium. Although
the star has lots of Fe in its core, only a small fraction of that Fe makes it
into the surroundings, and most gets crushed into the SN remant, either a
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neutron star or black hole.

Most of the energy (∼ 99 per cent) of the explosion is in the form of neu-
trinos, but the remaining 1 per cent is still ∼ 1051 ergs, and a vast source of
energy for the stirring the ISM, and potentially even removing a significant
amount of baryons out of the galactic potential well in the form of a galactic
wind.

In short, type II SNe are the end stages of massive stars, and are the
main source of α-elements, such as O, Mg, Ne and Si, and possible all of the
more exotic elements such as U.

4.1.4 Type I SNe

Type I SNe have spectra devoid of H-lines, but it is not so clear what are their
progenitors. One theory is that Type Ia SNe result from binary evolution: if
one component of a binary star has already reached its C/O WD stage, then
mass transfer from its companion, either a MS or itself a WD, may push
the star above the Chandrasekhar mass limit. This makes the star unstable
and initiates the explosion. This model would explain why all type Ia are so
similar, since the progenitor is basically always of the same mass and nearly
the same composition. Chevalier (Nature 260, 689, 1976) suggested this kind
of explosion is the main source of Fe in the Universe.

4.1.5 Summary

There are three main channels for element production: AGB stars, and type
I and type II SNe. These channels produce elements in very different ratios,
and, given the very different life-times for AGB and type I SNe on the one
hand (low and intermediate mass stars) as compared to type II SNe (massive
stars), at very different times after the formation of these stars.
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4.2 Ingredients for computing the evolution

of abundances

Since stars of different masses produce elements with a very different abun-
dance pattern (for example mostly C for AGB star, α rich for massive stars,
Fe-rich for type I SNe) we need to know how many stars of given mass, a
given population has formed to predict its abundance pattern. Also, the life-
times and hence the rate at which these stars produced these elements, are
very different: both AGB and type I SNe have low/intermediate-mass star
progenitors, and these evolve very slowly as compared to the massive star
progenitors of type II SNe. This then determines the required ingredients for
computing the abundance evolution of a galaxy.

Stellar Initial Mass Function
The initial mass function (IMF) Φ(M) is defined such that MΦ(M) dM is
the fraction of mass in stars of mass [M,M + dM ]. This function is difficult
to compute theoretically, with modern theories suggesting that its low-mass
end may be set by the properties of the turbulence observed in the molecular
clouds where stars form. Observationally Φ can only be measured in nearby
star forming regions, since the low-mass tail consists of low-mass and hence
faint stars.

There is no a priori reason why the lowest-mass objects to form in a
GMC should have masses high-enough to be able to ignite H-fusion in their
centres3 (thought to be ≈ 0.1M�), but may be it is feedback from fusion that
indeed stops accretion of mass onto the proro-star. Similarly there seems no
obvious reason why objects should stop accreting once they reach masses
∼ 100M� above which stars are thought to become unstable. In any case,
no observed stars have masses significantly higher than 100M�. The IMF is
thus to be measured between Mmin ≈ 0.1M� and Mmax ≈ 100M�. Two fits
to observations are often used, the Salpeter IMF, MΦ(M) ∝M−1.35, and the
Chabrier IMF,

MΦ(M) ∝ exp
[
−(log(M/Mc))

2/2σ2
]

for M ≤ 1M� (4.1)

∝ M−1.3 for M ≥ 1M� . (4.2)

3In fact some GMCs seem to contain freely floating planets with mass below the mini-
mum mass for H-fusion.
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where Mc = 0.079M� and σ = 0.68.

Stellar life-times
The life-expectancy of (single) stars of given mass and abundance can be
computed from stellar evolution calculations. Main uncertainties are due to
mixing (where fuel from the surroundings is mixed into the burning layer,
prolonging the life-time), presence of rotation and magnetic fields. The mod-
els can also predict how much elements of each type are released into the
surroundings at the end of the stellar life, either by winds and PNe, or the
ensuing SNe explosion.

The star formation history
Suppose from an initial mass M of gas, a fraction y is converted into stars
with known IMF. Given the stellar life-times, and given the amount of el-
ements those stars release as a function of time, it would be possible to
compute how the abundance pattern of the remaining gas changes in time.
If stars where to form at later times from this enriched gas, they would have
a higher abundance (metallicity) than the original stars. We would need to
know the whole star formation history (i.e. how many stars formed at each
time, and of each mass) to compute the abundance pattern at later times.
Numerical simulations of the formation of galaxies are now able to combine
star formation with stellar evolution to make such predictions. However the
uncertainties in some of the basic ingredients such as yields are still suffi-
ciently large that the predictive powers of such calculations are still small.

4.3 Stellar abundance evolution in a closed

box model

A simple model where we can compute the evolution of the abundance pat-
tern is a closed box model, of which the total mass M does not change as
some fraction of its gas gets converted into stars at each time. Let M be the
initial mass. At time t, an amount dM ′

? of stars forms in a time interval dt,
of which dM? goes into long-lived stars, and dM ′′

? goes into short lived stars.
We make the approximation that these stars die instantaneously, and return
their mass, enriched by burning, to the gas.
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Let MZ be the total mass in metals in the gas phase, and define its
metallicity Z ≡MZ/Mg, with Mg the current gas mass. As the newly formed
stars die, they enrich their surroundings with metals by an amount

dMZ |gain = p dM? , (4.3)

where p is called the yield. The long-lived stars are sinks of metals, and as
they form they lock metals away for ever. This decreases the metal mass in
gas by

dMZ |loss = −Z dM? , (4.4)

where we assume they form with metallicity Z. How does Z evolve? From
the definition of Z = MZ/Mg, we get

dZ =
dMZ

Mg

− Z
dMg

Mg

= −p dMg

Mg

, (4.5)

since dM = 0 = dM? + dMg in our close box model. Therefore

Z = Zi − p log(Mg/M) , (4.6)

where Zi is the initial abundance.

Stellar abundances
For Zi = 0, the amount of stars with metallicity below some value Z1 is

M?(< Z1) = M −Mg(< Z1) = M(1− exp

(
−Z1

p

)
) . (4.7)

This is the distribution of stars as function of their metallicity, and this sim-
ple model works surprisingly well for bulge stars.

The derivative of the previous equation yields

dM?(Z) =
M

p
exp(−Z/p) dZ , (4.8)

and therefore the mean stellar abundance is

〈Z?〉 =
0

∫∞
Z dM?(Z)∫∞
0
dM?

= p , (4.9)
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therefore the mean metallicity equals the yield, p.

The G-dwarf problem
For the MW, Mg/M ∼ 0.1 The abundance of star forming now is therefore
Z(Mg = 0.1M) = −p log(0.1) ≈ p/2.3 If this is to be close to the solar
abundance, Z� ≈ 0.02, then p ≈ 0.009. Then we find that the fraction
of stars with Z ≤ Z�/4 is M?(≤ Z�/4) = 0.44M , or nearly half of MW
stars should have abundance ≤ Z�/4. The observed value is nearer to 2 per
cent. This is called the G-dwarf problem, because it was first encountered in
G-dwarfs. Basically our theory predicts there should be many more low Z
stars than are observed. The solutions is probably that the MW is far from
a closed box, and has been losing a large fraction of its mass.
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Chapter 5

Reactions in the ISM

• General properties of reaction rates, form and dimension of reaction
coefficients

• Photo-ionisation and recombination

• Interstellar grains: composition, formation, effect on extinction, radia-
tion pressure, thermodynamics of

5.1 General properties of reaction rates

The rate at which a reaction such as

A + B → C (5.1)

occurs (for example the formation of CO from O and C) will depend on
the properties of the actual system (its temperature, density, abundance
distribution), but also on the physics of how likely A and B form C when a
collision does occur. We can separate the rate of collisions (which depends
on the system) and the cross section of formation (which depends on the
physics) by writing the production rate of C as

dnC

dt
= σ nA nB 〈vAB〉 (5.2)

≡ k nA nB , (5.3)

where nX is the number density of species X, and σ ([σ]= cm2 is the cross
section. The second line defines the rate coefficient k = σ 〈vAB〉 with units
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[k] = cm3 s−1 which will in general depend on the temperature. Calculation of
k for a specific reaction can be a demanding quantum mechanical calculation,
and tables of reaction rates and their temperature dependence are continually
updated as more accurate versions become available.

5.1.1 Examples

Three-body collisions
The rate of the three body reaction

A + B + C → D (5.4)

can be written as
dnD

dt
= k3 nA nB nC . (5.5)

From this it is clear that three body reactions occur at a rate ∝ k3 nC/k
as compared to the two-body reaction. For low densities this can be much
slower and three body reactions are then negligible.

Photo-ionization
The reaction

HI + hν → HII + e , (5.6)

can be written in terms of the density of photons of frequency ν, n(ν)dν =
u(ν)dν/hν where u is the energy density (cfr. Eq. 2.8). Since the relative
speed is now the speed of light, c, the rate due to photons with given fre-
quency can be written using Eq. (5.2) as σν nHI uν c dν/hν. Photons with
energy below hνth = 13.6 eV are not sufficiently energetic to ionise HI, hence
the net ionisation rate due to all photons with ν ≥ νth is

dnHII

dt
= nHI

∫ ∞

νth

σ(ν)
u(ν)c

hν
dν = nHI

∫ ∞

νth

σ(ν)
4πJ(ν)

hν
dν ≡ nHI Γ . (5.7)

Here, J(ν) is the mean intensity form Eq. (2.9) and the last step defines the
photo-ionisation rate per hydrogen atom, Γ.

This expression is relevant when the energy density is known; in the spe-
cial case where this is dominated by a single source (a star say), with luminos-
ity L(ν), we can compute the ionisation rate by computing the flux of pho-
tons with given frequency at distance r from the source, F (ν) = L(ν)/4πr2
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(neglecting absorption). A similar reasoning as above then yields

dnHII

dt
= nHI

∫ ∞

νth

σ(ν)
F (ν)

hν
dν . (5.8)

Collisional ionization
A sufficiently energetic electron1 colliding with HI may lead to an ionisation,

HI + e→ HII + 2e , (5.9)

with a rate
dnHII

dt
= Γe nHI ne . (5.10)

The collisional ionisation rate Γe is temperature dependent, in particular the
incoming electron needs to have a kinetic energy greater than the ionisation
energy χ of Hydrogen: (1/2)mev

2 ≥ χ.

Recombination
This is the reverse reaction of photo-ionisation,

HII + e→ HI + hν , (5.11)

and occurs at a rate governed by the temperature dependent recombination
coefficient α,

dnHI

dt
= αnHII ne . (5.12)

In ionisation equilibrium, dnHI/dt = 0, and the three reactions above
balance: the equilibrium neutral fraction x = nHI/(nHI + nHII) then depends
on Γ, Γe and α.

5.2 Grains

Grains are typically small (radii a ∼ 0.1− 1µm; Fig.5.1) solid particles pre-
dominantly composed of Si and C, that are important because they cool gas

1One usually neglects collisions with other particles, for example with protons. Why is
this mostly a good approximation?
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Figure 5.1: Sketch of an interstellar dust grain, from
http://www.astro.virginia.edu/class/oconnell/astr121/guide11.html

(to allow star formation), and act as catalysts for chemical reactions (see be-
low). They also are the building blocks for more massive particles, ranging
from rocks to eventually planets.

5.2.1 Grain formation

A spherical grain (radius a) moving with speed v through the ISM (particle
density n, particle mass mp) grows in radius and mass, if these particles stick
to the grain, at a rate

dm

dt
= mp (πa2) v n η , (5.13)

where η is a dimensionless sticking coefficient that describes the fraction of
particles that hit the grain that actually stick to it. If the grain has average
density ρ = m/(4πa3/3) then

da

dt
=
η nmp v

4ρ
. (5.14)

For typical values in a cold ISM cloud, a = 10−5 cm, n = 10 cm−3, v =
104 cm s−1 and pure hydrogen gas, it takes ∼ 107 years to build a grain.
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That is probably too long to be the dominant formation site for the ISM,
and grains are presumably made in denser environments, for example stellar
atmospheres (of for example AGB stars), and probably also in SNe.

5.2.2 Extinction by grains

The absorption coefficient due to spherical grains of radius a and number
density nd is (see Eq. 2.20)

αν =
dτ

ds
= nd (πa2)Qν , (5.15)

where the extinction efficiency Qν describes the wave-length dependence of
the radiation-dust interaction, Qν ∼ 1 when λ� a, Qν � 1 when λ� a.

The amount of dust is often characterised by the dust-to-gas ratio

ψ ≡ Md

Mg

. (5.16)

For gas with mean molecular weight µ this implies for the ratio of number
densities of dust particles (nd) over hydrogen atoms (nH)

nd

nH

=
ψµmH

md

, (5.17)

wheremH is the proton mass. The extinction due to dust , Aν = −2.5 log (Io/Ie),
where Ie is the emitted and Io the observed intensity after absorption (cfr
Exercise 1.1), to the centre of a cloud of radius R, is then

Aν = (2.5 log e) (πa2)Qν
nd

nH

∫ R

0

nH dl (5.18)

= (2.5 log e) τν (5.19)

where the integral
∫ R

0
nH dl ≡ NH is the hydrogen column density, and the

optical depth
τν = (πa2)Qν (nd/nH)NH . (5.20)

The wave-length dependence of Q can often be approximated as

Qλ = Q0

(
λ0

λ

)α

, (5.21)

with α ≈ 1−2. Since α > 0 absorption by dust is less in the K-band versus the
V-band say, and the presence of dust makes a star in the centre of the cloud
redder by an amount AK − AV = (QK −QV ) (πa2) (nd/nH)NH (2.5 log e).
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5.2.3 Radiation pressure on grains

Photons absorbed by a grain also transfer their momentum hν/c to it, gen-
erating radiation pressure. For the grain parameters given above, the ratio
of radiation force over gravitational force, due to a star of luminosity L and
mass M?, at distance R, is

Γ ≡ Frad

Fgrav

=
(πa2)Q (L/4πcR2)

GmdM?/R2
=

(πa2)QL

4π cGM?md

, (5.22)

an expression similar to that of the Eddington luminosty (L2 stars lectures).
Typically Γ � 1 in the envelopes of stars, and the dust experiences a strong
outward force. The accelerating grains collide with gas particles and drag
them along: the presence of dust can be a big factor in driving mass-loss
from AGB stars.

5.2.4 Grain thermodynamics

Kirchoff’s law

See Kwok, §10.3
A grain being heated by absorbing radiation will re-radiated its heat in the
IR. The relation between its absorption and emission properties follows from
considering what happens when placing the grain inside a cavity containing
Black Body radiation of temperature T : after reaching thermal equilibrium,
the presence of the grain should not affect the BB radiation.

The equation for radiative transfer, Eq. (2.21), with dIν/ds = 0 for the
thermal equilibrium case, then leads to Kirchoff’s equation relating absorp-
tion and emission2:

jν = αν Bν(Td) , (5.23)

which describes the emissivity jν of the grain in terms of its absorption
cross section, αν , and the Plank (Black Body) function Bν(T ) at the dust’s
temperature Td. Using Eq. (5.15) to describe the frequency dependence of the
grain’s absorption cross section, Kirchoff’s equation applied to dust grains
with number density nd at temperature Td, becomes

jν = αν Bν(Td) = nd (πa2)Qν Bν(Td) . (5.24)

2See also Rybicky & Lightman, §1.5.
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Dust emission from a uniform cloud

The flux detected at distance D from a uniform cloud with radius R, due to
thermal emission from its dust, follows from Eq. (5.24).

Fν(D) =
4πjν (4πR3/3)

4πD2
(5.25)

=
ψMgasQν Bν(Td)

(4/3) a ρdD2
, (5.26)

where ψ is the dust-to-gas ratio, Mgas the gas mass of the cloud, and ρd =
md/(4πa

3/3) the density of an individual dust grain.

Heating and cooling of dust

Dust placed in an ambient radiation field will absorb radiation and hence be
heated, at a rate H per unit volume of

H =

∫
ν

αν (4πJν) dν . (5.27)

In the particular case where the radiation field is due to the flux of a single
star (radius R?, effective temperature T?), at distance D, this becomes (cfr.
Eq.2.13)

H =

∫
ν

αν
πBν(T?)R

2
?

D2
dν (5.28)

=

∫
αν

L?(ν)

4πD2
dν . (5.29)

The dust will emit thermal radiation in the IR, which may escape from
the system, allowing the system of gas and dust to cool at a rate per unit
volume according to Eq. (5.24) of

L =

∫
(4πjν) dν =

∫
4π nd (πa2)Qν Bν(Td) dν. (5.30)

In equilibrium, H=L, and∫
Qν Bν(Td) dν =

∫
Qν

Bν(T?)

4
(
R?

D
)2 dν . (5.31)
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If the star radiates most of its energy in the visible where Qν ∼ 1, this
simplifies to∫

Qν Bν(Td) dν =
1

4
(
R?

D
)2

∫
Bν(T?) dν =

1

4
(
R?

D
)2σT

4
?

π
, (5.32)

where σ is the Stephan-Boltzmann constant. In the special case whereQν = 1
also for the grain this yields

Td(D) =

√
R?

2D
T? , (5.33)

and the dust temperature drops with distance from the star ∝ D−1/2.

5.2.5 Grain chemistry

IR spectoscopy show that most grains are composed of C and Si, often sur-
rounded by an icy mantle (Fig.5.1). Grains are important catalysts for chem-
ical reactions, for example for the formation of molecular hydrogen, where
two H atoms adsorbed on a grain, can ‘hop’ or tunnel across the grain to
form H2, which then may be return to the gas phase (see Fig.5.2). Other
molecules may also form in this way.

The rate of molecule formation can be written as

dn(H2)

dt
=

1

2
ε n(H)nd (πa2) vH , (5.34)

where vH is the relative velocity H-grain, and ε a dimensionless efficiency
factor. The factor 1/2 is because two Hs need to be adsorbed to form H2.
The molecular hydrogen can be destroyed by photons or collisions3, and
together these processes determine the equilibrium molecular fraction.

5.3 Application

A significant amount of star light produced in the Universe gets re-processed
by dust near the stars, and converted from optical and UV to IR wave lengths,
see Fig.5.3.

3Write-down the rate equations for this.
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Figure 5.2: The formation of molecular hydrogen on the surface of
a dust grain, through adsorption and subsequent tunnelling or hop-
ping of the H-atom over the surface of the grain. Taken from
http://www.ifa.hawaii.edu/UHNAI/article3.htm.

5.4 Exercises

1. For given values of the photo- and collisional ionisation rates, Γ and
Γe, and recombination coefficient α, compute the equilibrium neutral
fraction, x = nHI/(nHI + nHII) in a pure hydrogen gas with number
density n = nHI + nHII. Examine the limits at high- and low-density.

2. A pure hydrogen gas with number density n = nHI+nHII is fully ionised,
x = nHII/n = 1, at time t = 0. Assume Γ = Γe = 0. Calculate x(t).
The recombination time tr ≡ 1/αn. Compute the ionised fraction x(tr).

3. In a molecular cloud, molecular hydrogen forms on grains and is de-
stroyed by interaction with sufficiently energetic photons. Write the re-
action rates for these reactions, and specify the units of all coefficients
introduced. Compute the equilibrium molecular hydrogen fraction.
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Figure 5.3: The extra-galactic background radiation from the UV-optical to
the far IR, from Costamante 2007. At even higher energies the X and gamma-
ray background is produced by thermal bremsstrahlung of hot gas and more
importantly by the accretion onto black holes, the IR back ground off the
right of the plot is due to CMB photons left over from the Big Bang. The UV-
optical photons are mostly from star light, but the FIR peak which contains
almost as much energy as the UV+optical is mostly star light reprocessed by
dust.
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Chapter 6

Interaction of radiation with
matter

• Review of atomic structure, electron configurations, Hund rules (Ry-
bicky & Lightman, §9.1-9.4)

• Radiative transitions, dipole radiation, Einstein coefficients, selection
rules, transition rates (Rybicky & Lightman, §10.1-10.5)

6.1 Overview of electronic structure of atoms

and ions

6.1.1 Schrödinger’s equation

The Hamiltonian H for a multi-electron atom, with N electrons around a
nucleus of charge Ze, is the sum of the kinetic energies of all electrons, the
attractive Coulomb interaction between each electron and the nucleus, and
the repulsive Coulomb interaction between each electron pair:

H =
N∑

i=1

p2
i

2m
+

N∑
i=1

Ze2

ri

−
∑
i>j

e2

rij

. (6.1)

Since H has no explicit time dependence, the solution to the time-dependent
Schrödinger equation, i~ψ̇ = Hψ can be written as ψ(r, t) = ψ(r) exp(−iEt/~)
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where the spatial part of the wave-function is the eigenfunction of the Hamil-
tonian, with the energy E the corresponding eigenvalue:

Hψ = E ψ . (6.2)

The operator H follows from the expression Eq. (6.1) by the transforma-
tion p → −i~∇. This ‘classical’ equation misses the spin properties of the
electrons (and the nucleus), which only follow from the relativistic (Dirac)
equation: we will simply write the total wave-function as a product of the
solution to Eq. (6.2) times the spin state of the electron.

The hydrogen atom

The solution for a hydrogen-like atom with N = 1 are analytic, and in
spherical coordinates are given by

ψ(r) = r−1Rnl Ylm(θ, φ) , (6.3)

where the Rnl are associated Laguerre polynomials, and Ylm are spherical
harmonics. The quantum numbers n, l and m characterise the energy, total
angular momentum, and angular momentum along the z-axis:

En = − Z2e2

2a0n2
= 27.2

Z2

2n2
eV (6.4)

L2ψ = l(l + 1)ψ (6.5)

Lzψ = mψ . (6.6)

Here, l = 0, 1, · · · , n−1 and m = −l,−l+1, · · · , l. These wave-functions are
called orbitals, and traditionally1 l = 0, 1, 2, 3, · · · are denoted as s, p, d, f, · · · .
The energy of an electron only depends on n (degeneracy) with 2n2 states
for given n (2(2l + 1) allowed states for given l).

Many-electron systems: LS coupling and Hund’s rules

An Ansatz for the orbital structure of a many electron system can be made by
writing them as linear combinations of the single electron solution2, for exam-
ple ψ(1, 2) = {ψnlm(1)ψn′l′m′(2)− ψnlm(2)ψn′l′m′(1)} /

√
2, where the particu-

lar linear combination expresses the fact that electrons are indistinguishable.

1Originally a spectroscopic notation.
2Recall these form an orthogonal set of basis functions.
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The electron configuration is then specified by giving all nlm for each elec-
tron. For example the ground state of oxygen (8 electrons) is 1s22s22p4.

This Ansatz is not an exact solution to the Schrödinger equation, and the
coupling induced by the electron-electron interactions cause the ls, m’s and
s’s of individual electrons not to be good quantum numbers anymore (that
is, the L2 operator for example for a single electron no longer commutes with
H, but the total angular and spin momenta are still good quantum num-
bers. The total angular momentum L =

∑
j LJ is the vector sum of the

individual momenta, and for example for a two-electron system has allowed
values |L1 − L2| ≤ L ≤ L1 + L2 according to the addition rules for angular
momentum in quantum mechanics.

The electron structure is then described by ‘terms’ characterised by the
particular values of L and S in what is called LS coupling or Russell-Saunders
coupling. Filled shells have L = S = 0 and can be ignored in the coupling,
so we only need to specify L and S for the outer most electrons (when in
the ground state). Rotational symmetry guarantees that the energies do not
depend on mL or mS (unless an external field breaks the symmetry).

The spin-interactions in a state with high S will make the electrons stay
away from each-other further as compared to a low S state, hence making
their Coulomb repulsion lower: this state will hence be more bound. Similarly
for given S, in a state with higher L, orbiting electrons will be on average
further apart from each-other than for lower L, similarly leading to a lower
(more bound) energy. This is encapsulated in Hund’s rules

1. terms with larger spin S tend to lie lower in energy

2. for a configuration with given S, terms with larger L tend to lie lower
in energy

Spin-orbit coupling further breaks the degeneracy of states with the same S
and L depending on the total angular momentum J = L + S.

The electronic state of a system is now described by n, S, L and J , and
written as 2S+1LJ , where as before L = 0, 1, 2, · · · is written as S, P, D, · · · .
An example is shown in Fig.6.1 for two equivalent p electrons (i.e. with the
same value of n).
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Figure 6.1: Energy levels for two equivalent p-electrons from
http://en.citizendium.org; the notation is 2S+1LJ . The energy degen-
eracy is broken from left to right due to the following mechanisms. The
spin-spin correlation energy makes the singlet states (S = 0) at higher
energy than the triplet state (S = 1), following Hund’s first rule. For the
same S, states with higher L are at lower energy (so 1D is lower then 1S,
Hund’s second rule). Spin-orbit coupling further breaks the degeneracy of
each term according to its J value. The final column to the right shows the
remaining 2J + 1 degenerate levels.

44



6.2 Dipole radiation

6.2.1 Transition probability

The semi-classical description of the interaction of radiation with atoms
treats the atom quantum mechanically but the radiation classically. The
Hamiltonian of the system is H = H0 +H1, where H0 is the atomic Hamilto-
nian discussed in the previous section, and the electromagnetic Hamiltonian
H1 is

H1 = − e

hc

∑
j

A · pj , (6.7)

where A(r, t) = A(t) exp(ik ·r) is the vector potential, and pj is the momen-
tum of each electron.

Treating H1 as a perturbation on the state of the electrons |ψ > (which
are solutions H0|ψ >= E|ψ >), the probability per unit time, Rif , that the
radiation will induce a transition from an electronic state |ψi > to a state
|ψf > is

Rif ∝ | < ψf |H1|ψi > |2 . (6.8)

The spatial dependence exp(ik · r) of the vector potential can be expanded
in a Taylor series,

A(r) = A0 exp(ik · r) ≈ A0 (1 + ik · r + · · · ) , (6.9)

and the dipole approximation limits this expansion to the first term (i.e.
A0). Higher-order contributions are typically smaller by factors v/c and
can usually be neglected, except if the dominant dipole term is zero from
symmetry arguments. Such ‘forbidden’ lines occur then because of these
higher-order terms, and correspond to electric quadrupole, magnetic dipole
and other higher-order terms. We will see below that such forbidden lines
can actually be very strong in the ISM, for example forbidden [OIII] transi-
tions (forbidden lines are denoted by the square brackets []) are the strongest
lines detected in planetary nebulae.

In the dipole approximation the transition probability is then given by
the volume integral

Rif ∝ |
∫
ψ†f A0 ·

∑
j

pj ψi dV |2 . (6.10)
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By applying the commutation relation3 [rj,H0] = i~pj, this can be writ-
ten as

Rif ∝ |~−1

∫
ψ†f

(
A0 ·

{∑
j

(rjH0 −H0rj)

})
ψi dV |2 (6.11)

∝ |~−1(Ei − Ef )

∫
ψ†f (A0 ·

∑
j

rj)ψi dV |2 (6.12)

since H0|ψi,f >= Ei,f |ψi,f >. The transition rate is proportional to the
(square) of the expectation value of the electric dipole operator, d = e

∑
j rj.

6.2.2 Selection rules

The transition probability Eq (6.12) is zero and hence not dipole allowed if
the initial and final states do not adhere to certain selection rules.

1. Laporte’s rule: Since the dipole operator is odd, the parity of initial
and final state should be opposite.

2. The transition probability for a many-electron system is a sum of terms
such as∫

ψ†a(1)ψ†b(2)ψ†c(3) · · · rj ψa′(1) , ψb′(2) , ψc′(3) · · · d3x1 d
3x2 d

3x3 · · ·
(6.13)

where a, b, c, · · · and a′, b′, c′, · · · are the electron configurations in the
final and initial state, respectively. For an electron i 6= j, the integral
over all space will be zero unless the initial and final states are the
same, since the ψi are orthogonal functions. Hence the one electron
jump rule: all electrons orbitals should be the same, except for one.

3. Since the dipole operator does not involve spin, the spin of the electron
can not change.

4. The selection rules

• ∆l = ±1

• ∆m = 0, ±1

3Demonstrate this as an exercise.
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Figure 6.2: The transitions 1D2 →3 P2 at λ = 500.7 nm and 1D2 →3 P1 at
495.9 nm in OIII are dipole-forbidden, yet are usually by far the strongest
nebular lines in Planetary Nebulae. These lines given such nebulae their
typical green colours, see the examples on duo.

follow from examining the dipole operator for the jumping electron, see
Rybicky & Lightman exercise 10.6.

As remarked earlier transitions between states that do not follow these
selection rules, although forbidden in the dipole approximation, may nev-
ertheless occur due to higher-order terms. An example shown in Fig.6.2
are forbidden transitions in OIII (doubly ionised oxygen), for which the two
valence electrons have the 2p2 configuration discussed earlier.

6.2.3 Examples

Bound-bound transitions

The dipole operator can be evaluated when the electron configurations of
initial and final state are known. These can be computed exactly for the
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hydrogen atom, and involve integrals of the form

|〈ψf |r|ψi〉|2 ∝
∫

(rRnl) r (rRn′l′) r
2dr , (6.14)

in terms of the radial dependence of the orbitals (Laguerre polynomials Rnl).

Bound-free transitions (photo-ionisations)

If the electron in the final state of the interaction is unbound, its wave-
function is that of a free particle, |ψf >∝ exp(−iq · r). The transition
amplitude is then

|〈ψf |A0 · p|ψi〉 ∝ |
∫
ψ†f (A0 · ∇)ψi d

3x| (6.15)

∝ |A0 ·
∫
ψ†i ∇ψf d

3x| (6.16)

∝ |(A0 · q)

∫
ψ†i ψf d

3x| , (6.17)

which depends on the momentum q of the free electron. Photo-ionisation
will not take place if the energy hν of the incoming electron is less than the
binding energy χ of the atom, hν ≥ hνth = χ. Above this threshold the cross
section falls approximately ∝ ν−3. The net cross section is thus

σbf =

{
0, if hν < hνth

σ0(νth/ν)
3, if hν ≥ hνth .

(6.18)

Here, σ0 is the cross section at the threshold. The presence of such thresh-
olds introduces characteristic photoelectric absorption edges in the spectra of
sources such as for example AGN whose light is reprocessed by intervening
gas; see Fig.6.3 for an example.

Free-bound transitions (recombinations)

The cross section σfb for free-bound transitions can be found by considering
the detailed balance relation for a system of atoms and ions, in ionisation
equilibrium with an ambient Black Body radiation field. The (recombination)
rate for the reaction

N+ + e→ N , (6.19)
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Figure 6.3: Photoelectric absorption edges imprinted by intervening gas in
a mock AGN spectrum, from Ballatyne et al, A&A 409, 503. Sufficiently
energetic photons can ionise the intervening matter to a higher ionisation
state, and this increases the opacity of the intervening medium. Photons need
to have an energy above the ionisation energy of the particular ion, hν ≥ hνth,
therefore the ionisation edge appears as a saw-tooth, with depth σ0 and
recovering to the continuum ∝ (νth/ν)

3 see Eq. (6.18). Ionic transitions that
cause the edges are indicated.
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in terms of the density of ions (n+) and electrons (ne) is

dn+

dt
|rec = −n+ ne σfb(v)v f(v) dv , (6.20)

where σfb(v) is the recombination cross section for electrons moving with
velocity v, and f(v) is the fraction of electrons with velocity in the inter-
val [v, v + dv] (this is an application of Eq.5.2). The corresponding photo-
ionisation rate is

dn+

dt
|ph = n0

4πBν

hν
[1− exp(−hν/kT )]σbf (ν) dν , (6.21)

see Eq. (5.7), in case the radiation field is that of a Black Body, Jν = Bν .
The term 1− exp(−hν/kT ) accounts for stimulated emission, and n0 is the
number density of neutrals. In equilibrium the net rate dn+/dt = 0, hence

n+ ne σfbf(v)
hν

m
= n0 exp(−hν/kT )

4π

hν

2hν3

c2
σbf , (6.22)

where we used energy conservation,

hν = mv2/2 + ∆E , (6.23)

with ∆E the ionisation energy, and Eqs. (8.1) and (8.2) for the BB and
Maxwell distributions, applicable in thermal equilibrium. Using Saha’s equa-
tion, Eq. (8.8), to the ratio n+ ne/n0 then yields the Milne relation between
photo-ionisation and recombination cross sections:

σbf

σfb

=
ge gn+

2gn0

m2c2v2

h2ν2
. (6.24)

The g factors represent the statistical weights of each term.

6.3 Exercises

1. Derive the selection rules ∆l = ±1, ∆m = 0,±1. Hint: write the an-
gular dependence of orbitals as Pm

l (µ) exp(imφ) in terms of the asso-
ciated Legendre functions, where µ = cos(θ), and apply the recurrence
relations

(2l + 1)µPm
l = (l −m+ 1)Pm

l+1 + (l +m)Pm
l−1 (6.25)

(2l + 1)
√

1− µ2Pm−1
l = Pm

l−1 − Pm
l+1 . (6.26)

Write the dipole operator∝ r in terms of ((x± iy), z) or (sin(θ) exp(±iφ), cos(θ)).
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2. CIV, SiIV and OVI all produce characteristic doublets. Show that these
ions all have the same ground state electron configuration, which is also
the same as that of Alkali metals. Just as in Alkali metals, the doublet
results from transitions between the excited (p) state, and the ground
(s) states. Write down the state for each of these three configurations.
Use Hund’s rules to rank them in energy. Are these transitions dipole
allowed? Consider the degeneracy levels of the excited states: what is
the ratio of line strengths for the two lines in the doublet? [Hint: for
given S and L, states with higher J are less bound (Lande’s rule).]
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Chapter 7

Nebulae

Dyson & Williams, 5.1–5.3, Kwok §5.12

• HII regions

– jump condition

– on-the-spot approximation, case A and case B recombination

– ionization level and sharpness of ionised region

– heating and cooling processes, equilibrium temperature

– importance of line cooling by metals

• temperature sensitive line ratios

7.1 HII regions

HII regions are interstellar gas clouds in which the hydrogen in part of the
cloud is photo-ionised by a hot star. Usually this signals the end of star
formation in the initially molecular cloud, as the photo-ionised gas is also
heated and this makes the cloud disperse. The ionising star needs to be
massive, since the Black Body spectrum of lower mass stars produces very
few photons with energy ≥ 13.6 eV required to ionise HI. The presence of
other elements, such as He and trace fractions of metals, affects the ionisation
and thermal structure of the cloud: line cooling by metal transitions reduces
the temperature of the cloud.
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7.1.1 Description in terms of a jump condition

L2 Stars & Galaxies exercises
Consider a spherical cloud, initially completely neutral, consisting of hydro-
gen with uniform number density nHI = n. At time t = 0, a hot star at the
centre of the cloud starts ionising its surroundings, emitting ionising photons
at a constant rate Ṅγ. The gas inside the ionisation front at radius R will be
mostly ionised, and at larger distances will be mostly neutral. Neglecting the
width of this transition region, the position and speed of the front is found
from (see L2 Stars and Galaxies)

4π R2 nHI
dR

dt
+ αnHII ne

4π

3
R3 = Ṅγ , (7.1)

where ne = nHII is the density of electrons and ions, and α is the recombi-
nation coefficient. This jump conditions expresses the fact that an ionising
photon either ionises a neutral atom for the first time increasing R (first term)
or compensates for a recombination within the ionised region (second term).
If we assume the gas inside the ionised region to be completely ionised, then
nHII = ne = n inside the ionized region, and nHI = n in the neutral zone,
then Eq. (7.1) can be solved exactly:

R(t) = RS (1− exp(−t/tr))1/3 , (7.2)

where the recombination time tr = (αn)−1 and RS the Strömgren radius.

7.1.2 Case B recombination, and on-the-spot approxi-
mation

See also Rybicky & Lightman §10.5
The general solution above shows that the ionisation front stalls at the
Strömgren radius RS for times t � tr. The system then reaches an equilib-
rium where photo-ionisations balance recombinations. The photo-ionisation
rate Γ from Eq. (5.7) is

Γ =

∫ ∞

νth

σ(ν)
4πJ(ν)

hν
dν , (7.3)

where the mean intensity in this particular case of a single source with spec-
trum L(ν) at distance R is

4πJν =
L(ν)

4πR2
exp(−τν) . (7.4)
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This follows from considering the flux received at distance R from a source:
the first factor combines the definition of mean intensity 4πJν =

∫
Iν dΩ

(Eq. 2.9) with the equation that relates flux and intensity, F =
∫
I cos θ dΩ

(Eq. 2.13), the second factor exp(−τν) takes into account absorption. The
recombination rate per unit volume is αnHII ne (Eq. 5.12). In equilibrium,
ionisations balance recombinations, hence

nHI Γ = αnHII ne , (7.5)

note that we have neglected collisional ionizations here. We will see later
that the temperature in an HII region is sufficiently low for this to be a good
approximation.

The recombinations in the the RHS of Eq. (7.5) involve the capture of
a free electron to a given energy level n of the hydrogen atom followed by
a cascade of the excited electron to lower energy states until it reaches the
ground state n = 1. We can compute the probability for capture to level
n along the lines described in section 6.2.3, let’s denote this recombination
coefficient as αn, a function of temperature T . The recombining gas will
hence emit a series of hydrogen emission lines, corresponding to the excited
electron making transitions n → n′ < n. The Balmer lines of which Hα
has n = 3 → n′ = 2 give HII regions their characteristic red colour. The
total recombination rate is then simply the sum of recombinations to all en-
ergy levels n: this is called the case A recombination coefficient: αA =

∑
n αn.

However consider recombinations directly to the ground state, which oc-
cur at a rate governed by α1. Such a transition will result in the emission of
a photon with energy hν ≥ 13.6 eV, since the initially free electron had en-
ergy greater than the ionisation energy of HI. The resulting photon therefore
has enough energy to ionise HI: how should we treat this so-called diffuse
radiation1?

One way would be to describe ionizations in the HII region as being due
either to photons from the source, or photons resulting from the diffuse ra-
diation field. This makes the problem too hard for an analytical description,
but it is possible to treat it numerically. Another way is to make the follow-

1Diffuse since the whole ionised part of the HII region acts as a source of ionising
photons.
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ing approximation: assume that the photon produced by a recombination
to the ground state ionises a neutral hydrogen at the same position: this is
called the on-the-spot approximation. Recombinations to the ground state
then have no effect at all, since each recombination is balanced by a new
ionisation at the same location.

The HII region in the on-the-spot approximation is then given by Eq. (7.5),
except we should exclude recombinations to the ground state: the recombi-
nation coefficient is then the case B coefficient αB ≡ αA−α1 =

∑∞
n=2 αn: the

sum of recombinations to all levels, excluding those to the ground state n = 1.

The equilibrium relation, Eq. (7.4), can be integrated to the edge of the
HII region, at position RE, to yield

∫ RE

0

nHI 4πR
2 dR

∫ ∞

νth

L(ν)

hν

1

4πR2
exp(−τν)σν dν =

∫ RE

0

4π R2 αB nHII ne dR .

(7.6)
Interchanging the integrals, the LHS becomes∫ ∞

νth

L(ν)

hν

{∫ RE

0

exp(−τν)nHIσν dR

}
dν . (7.7)

Using the relation between neutral density and cross-section, the optical
depth dτν = σν nHI dR, the integral in brackets is

∫∞
0

exp(−τν) dτν = 1,

hence the LHS becomes
∫∞

νth
L(ν)/hν dν = Ṅγ, the rate at which the central

source emits ionising photons. The ionisation equilibrium conditions then
becomes ∫ RE

0

4π R2 αB nHII ne dR = Ṅγ , (7.8)

the familiar expression for the Strömgren radius, RE ≡ RS, and with the
case B recombination coefficient.

7.1.3 The ionisation level within the HII region

In ionisation equilibrium, the ionised fraction x = nHII/n is a solution to

(1− x)Γ = αB x
2 n . (7.9)

55



At distance R from the star, the ionisation rate is

Γ =

∫
νth

L(ν)

hν

1

4πR2
exp(−τν)σν dν (7.10)

≈ σνth

4πR2

∫ ∞

νth

L(ν)

hν
dν (7.11)

≈ σνth
Ṅγ

4πR2
. (7.12)

The first approximation is to neglect the exp(−τν) by assuming the gas to
be very highly ionised, the second approximates the photo-ionisation cross
section σν ≈ σνth. We can use the following typical parameters to judge how
well these approximations work: assume the ionising source is a single O-star
which typically emits Ṅγ = 1049 s−1, whereas the cloud has n = 102 cm−3,
and σνth

= 6.3×10−18 cm2. At a distance of R = 1 pc, Γ ≈ 5.3×10−5 s−1. The
case B recombination coefficient αB ≈ 2.6× 10−13 cm3 s−1 at a temperature
of T = 104 K. Substituting these numbers yields the equation

Γ

αB n
≈ 5× 10−7 s−1

2.6× 10−13 cm3 s−1 × 102 cm−3
≈ 104 =

x2

1− x
, (7.13)

hence x ≈ 1− 10−4 or the HII region is indeed very highly ionised.

7.1.4 The width of the HII region

HII regions are very sharp, i.e. the distance over which the gas goes from
very highly ionised, to almost completely neutral, is short in general. The
width can be estimated by solving

x2

1− x
=

Γ

αB n
(7.14)

dΓ ≈ −Γσ nHI dR = −Γσ (1− x)n dR , (7.15)

which combines the equation for ionisation equilibrium, with an approxima-
tion of how quickly Γ changes with R close to the edge of the ionisation front2.

2The approximation neglects the geometric 1/R2 decrease in Γ.

56



These equations combine to

dλ = − 2− x

x (1− x)2
dx , (7.16)

where dλ = σ n dR. λ is a dimensionless measure of distance, dλ = dR/〈sν〉,
where 〈sν〉 is the mean free path from Eq. (2.28). The above differential
equation can be solved for λ(x), and the solution shows λ diverges only
logarithmically for x → 0. For example for λ = 10, x � 1, yet for the HII
regions parameters from before this corresponds to ∆R ≈ 10−3 pc� RS: the
ionisation fraction x goes from very large x ∼ 1 to very small x � 1 over a
distance much smaller than the Strömgren radius.

7.1.5 The temperature of HII regions

Heating

Neutral hydrogen in an HII regions gets photo-ionised by photons with en-
ergy E = hν larger than the ionisation energy, hνth =13.6eV. The excess
energy ∆E = hν − hνth goes initially (mostly) into kinetic energy of the
liberated electron, which shares that energy through collisions. This heats
the gas, and the process is called photo-heating.

The heating rate H per unit volume, follows from multiplying the ionisa-
tion rate with the energy ∆E liberated per ionisation,

H = nHI

∫ ∞

νth

4πJν

hν
(hν − hνth)σν dν . (7.17)

The ionisation rate per hydrogen atom due to photons with frequency ν is
(4πJν/hν)σν , and this is multiplied by the energy liberated (hν − hνth) per
ionisation to get the heating rate. Using Eq. (7.9) for the equilibrium neutral
fraction nHI/n = 1− x yields

H =
x2αBn

2

Γ

{∫ ∞

νth

4πJν

hν
(hν − hνth)σν dν

}
(7.18)

≈ αB n
2 ε

Γ
, (7.19)

where the last step defines

ε ≡
∫ ∞

νth

4πJν

hν
(hν − hνth)σν dν , (7.20)
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and the approximation x ≈ 1 was used for the ionised fraction within the
HII region. Verify that H has the correct units.

The heating rate H depends on the ratio ε/Γ: note that since both are
proportional to the intensity J , the heating rate is independent of J . This
may seem curious at first, but is due to the fact that only the neutrals get
heated. Increasing J increases the heating rate ε, but decreases the neutral
fraction, and these exactly compensate. Note that H depends on the shape
of the ionising spectrum (a source with relatively more high energy photons
heats the gas more), and also on the density of the gas (higher density gas
gets heated more).

An estimate of the heating follows from equating the mean energy per
photon to the stellar temperature, ε/Γ ≈ (3/2) kT?, where T? is the surface
temperature of the star.

Cooling

As the ionised gas recombines, the excess energy of the recombining electron
is radiated away, and presents a loss term for the thermal energy of the gas:
this is called radiative cooling. The cooling rate per unit volume, L, can be
estimated by multiplying the recombination rate per unit volume, with the
energy ∆E lost per recombination, ∆E ≈ (3/2) kT , with T the temperature
of the nebulae:

L ≈ αB nHII ne η kT . (7.21)

If all electrons had equal chance of recombining, we would expect η = 3/2,
the mean energy per particle. However, low energy electrons have a higher
chance of recombining than higher energy electrons, therefore η ≈ 1, and the
cooling rate is slightly lower.

The equilibrium temperature of a pure hydrogen HII region

In equilibrium, H = L implies x2 αB n
2 (3/2)kT? = x2 αB n

2 η kT , or T ≈
(3/2η)T? > T?. This is independent of distance and density, but depends on
the stellar temperature. The nebula is hotter than the star, because η < 3/2.
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Observed HII regions have lower temperatures than this: this is because par-
ticle collisions, in particular those involving metals, contribute significantly
to the cooling rate.

Cooling due to metals: collisionally excited line radiation

Osterbrock & Ferland, §3.5
Collisionally excited line cooling occurs when an atom or ion is collisionally
excited to an energy level ∆E above the ground state, then returns to its
ground state by a radiative transition. When this photon with energy ∆E
escapes from the system, it takes away energy, hence this process acts to cool
the gas. The rate at which this occurs can be found by first considering the
system to be in equilibrium, in which case we can apply the principle of de-
tailed balance. This yields atomic relations also valid outside of equilibrium3.

Consider a 2-level atom, with the excited level n = 2 at energy ∆E12

above the ground state n = 1. Let σ12(u) be the velocity-dependent cross
section for collisional excitations 1 → 2, and similarly for σ21. Detailed
balance in equilibrium requires

ne n1 u1 σ12(u1) f(u1) du1 = ne n2 u2 σ21(u2) f(u2) du2 , (7.22)

an application of Eq. (5.2), where we have in addition considered a Maxwellian
distribution f(u) for the velocities. Here, n1, n2 and ne are the number den-
sities of ground state, excited state, and electrons, respectively. We can now
apply the Boltzmann distribution to compute the ratio n1/n2 (Eq. 8.5), and
energy conservation:

n2

n1

=
g2

g1

exp(−∆E/kT ) (7.23)

(1/2)mu2
1 = (1/2)mu2

2 + ∆E12 , (7.24)

where T is the equilibrium temperature, to find

σ12

σ21

=
n2

n1

f(u2)

f(u1)
=
g2

g1

u2
2

u2
1

, (7.25)

3We derived the Einstein relations of the Appendix in a similar manner.

59



by taking into account that the velocity distribution in equilibrium is the
Maxwell distribution, f(u) ∝ u2 exp(−mu2/2kT ). Now define the dimen-
sionless energy-dependent cross section, Ω(1, 2;E), as

σ12(u) ≡
π~2

m2u2

Ω(1, 2;E)

g1

. (7.26)

Verify this is indeed dimensionless, and that from the previous discussion it
follows that

σ21(u) ≡
π~2

m2u2

Ω(1, 2;E)

g2

. (7.27)

With this definition, the collisional de-excitation rate is

nen2

∫ ∞

0

u2 σ21(u2) f(u2) du2 = nen2

∫ ∞

0

u2
π~2

m2u2
2

Ω(1, 2;E)

g2

× 4π (2πkT/m)−3/2 u2
2 exp(−mu2

2/2kT ) du2 (7.28)

= nen2

(
2π

kT

)1/2 ~2

m3/2

1

g2

×
{∫ ∞

0

Ω(1, 2;E) exp(−E/kT ) d

(
E

kT

)}
(7.29)

≡ nen2

(
2π

kT

)1/2 ~2

m3/2

1

g2

Γ(1, 2) . (7.30)

The penultimate step is a change of variables from u2 to E = (1/2)mu2
2, the

last line defines the dimensionless energy-weighted cross section Γ(1, 2) to be
the integral in {}. The collisional excitation rate is similarly

nen1

∫ ∞

0

u1σ12(u1) f(u1) du1 = nen1

(
2π

kT

)1/2 ~2

m3/2

1

g1

× Γ(1, 2) exp(−∆E12/kT ) (7.31)

≡ nen1q12 . (7.32)

The last line defines the net rate coefficient q12. Quantum mechanical calcu-
lations are needed to compute the dimensionless Γ(1, 2) for given atoms and
ions, what we will need later is that the rate per unit volume for collisional
excitations is

nen1q12 ∝ T−1/2 exp(−∆E12/kT ) . (7.33)
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Figure 7.1: Contribution of various elements (coloured curves labeled with
the corresponding element) to the total cooling rate (black curve) of a solar
abundance cloud as a function of temperature T , from Wiersma et al 2009.
The dashed curve assumes primordial gas consisting of H and He. Collisional
line cooling of electronically excited levels is not important below T ∼ 104K
as collisions are not energetic enough to excite any electronic transitions, and
also not above T ∼ 107 K as most atoms are completely ionised. Thermal
Bremsstrahlung causes the upturn above T ∼ 107 K.
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Consider now a low density gas. We assume that atoms get collisionally
excited from level 1 → 2, but that the gas has such low density that transi-
tions 2 → 1 are mostly radiative4. The photon with energy hν21 = ∆E12 may
escape the system if its optical depth is low enough. This is why particularly
forbidden lines are good coolants: they have a small optical depth. A photon
from an allowed transition with large optical depth may be re-absorbed in
the cloud, hence fail to escape, and consequently not contribute to the cool-
ing rate.

If the photon can escape, the cooling rate due to such collisionally excited
lines per unit volume is then the product of the collisional excitation rate,
times the energy ∆E12 of the escaping photon,

L = ne n1 q12 ∆E12 . (7.34)

Important coolants in the ISM are relatively abundant elements (such as C,
Ni, O, Ne and Fe), see below.

Given that this cooling results from collisionally excited levels, it is easy
to understand the density dependence of L, and we might have expected
collisions to be ineffective when the typical collision energy is less than that
required to excite the transition: when kT � ∆E12, collisional excitations
are exponentially suppressed since q12 ∝ T−1/2 exp(−∆E12/kT ).

For very high T � ∆E12/k the rate drops slowly ∝ T−1/2. However in a
real system the ion is likely to increase its ionisation state when kT ≥ ∆E1∞.
Consider Oxygen for example. At low T , Oxygen might be mostly neutral,
and collisions are unimportant when kT � ∆E12, for any excited state 2 of
OI. With increasing T , collisions become important, and the gas starts to
cool due to excitations in OI. However for even higher T , Oxygen will be
mostly in the form of OII, hence cooling is now due to excitations of OII.
Similarly for even higher T , cooling is due to OIII, then OIV, then OV, etc.
A particular ion, say OII, will therefore be an important coolant in a given
temperature range: below a minimum temperature, either most Oxygen ions
are in a lower ionisation state (OI) and/or the collisions cannot excite the

4Recall that the collisional transition rate ∝ nen2, whereas the radiative rate ∝ n2:
a power of density less. Therefore collisional de-excitation will be less important than
radiative ones for low enough densities.
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ion, whereas at higher T most ions are in a higher ionisation state (OIII,
say or higher). Finally at sufficiently high T the species is fully ionised,
and no longer contributes to the cooling. It should then also be possible to
constrain the temperature of the nebula from the relative contributions of
different transitions of the same element to the cooling rate.

Figure 7.1 shows how different species contribute to the cooling rate as
function of T . The cooling rate Λ per unit volume is normalised per Hy-
drogen atom, Λ ≡ (L/n2

H), and the different coloured lines illustrate the
contributions to Λ for a variety of species, assuming solar abundances. Note
how each species (Oxygen say) adds a vaguely Gaussian shape to the overall
Λ: at too low T , the collisions cannot excite the atom, at too high T the
atom is completely ionised and hence does not contribute to cooling.

The full black curve is the sum of all curves, the dashed line is the case
without any metals. At higher T ≥ 107 K, the elements are almost com-
pletely ionised and the cooling rate drops. Here, an unrelated cooling mech-
anism, thermal Bresstrahlung due to the electrons, starts to dominate. Below
∼ 104 K, line cooling due to collisional excitation of electronic energy levels,
is negligible as kT � ∆E12. In practise there are other transitions not in-
cluded in that figure which do allow the gas to cool5.

The line cooling described here causes observed HII regions to be cooler
than what we had naively derived in the previous section of pure HII regions.

7.2 Temperature sensitive line ratios

Kwok, §5.12
The previous section discussed how the fraction of an element that is in a
given ionisation state (say OV as compared to OVI) depends on tempera-
ture; however that fraction depends on density as well. Crucially however
there are line ratios that only dependent on temperature: these are used to
measure nebular temperatures, for example of HII or PNe.

An important example are the forbidden lines in [OIII], discussed in
Sect. 6.2.2, which involve dipole forbidden transitions between the excited 1S

5Fine-structure, and roto-vibrational transitions in molecules for example
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and 1D terms to the ground state 3P . These states can be excited through

• collisional excitation

• recombination of OIV to an excited state, followed by a radiative cas-
cade

• absorption of a (UV) photon, followed by a radiative cascade

In most physical systems, the first process dominates. The excited state may
return to the ground state either collisionally, or radiatively. We will simplify
the [OIII] ion as a simple three level system, with n = 1 the ground state
(3P ), and two excited levels n = 2 (1D) and n = 3 (1S).

Following Eq. (7.32), write the rate of collisional excitation from n = 1 →
n = 2 as

dn2

dt
|coll = n1 n2 q12 , (7.35)

and similarly for the collisional excitation from n = 1 → n = 3 and n =
2 → n = 3. Radiative de-excitation is described in terms of the Einstein ‘A’
coefficients from Eq. (8.9), for example for n = 2 → n = 1

dn1

dt
|rad = n2A21 , (7.36)

and similarly for n = 3 → n = 2. In equilibrium, the net density of [OIII] in
its three states does not change, hence all collisional excitations are balanced
by the corresponding radiative and collisional de-excitations:

nen1(q12 + q13) = n2(A21 + neq21)

+ n3(A31 + neq31) (7.37)

n2 [ne(q21 + q23) + A21] = n1neq12 + n3 [neq32 + A32] (7.38)

n3 [A32 + A31 + ne(q32 + q31)] = ne [n1q13 + n2q23] . (7.39)

Terms on the left represent the different channels (radiative ∝ A, or colli-
sional ∝ q) by which the number density of levels 1,2,3 (top to bottom) are
depleted, whereas those on the right are the channels that produce those lev-
els. These equations can be solved numerically and so the level population
computed, once the temperature dependence of the collisional rate coeffi-
cients (the qs) and the Einstein A coefficients are known. Only two of these
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equations are independent, since n1 + n2 + n3 is constant.

For the typically relatively low densities of nebulae in the ISM, these
equations can be simplified by neglecting collisional de-excitations as com-
pared to radiative ones. Note that a collisional de-excitation (for example
2 → 1 is ∝ nen2q21 and hence will be slower at lower density than the radia-
tive one which is ∝ n2A21, one power of density less. Furthermore we can
usually assume most atoms to be in the lower energy states, n3 � n2 � n1.

Under these approximations the last two equilibrium relations become

n2A21 ≈ n1neq12 (7.40)

n3 [A32 + A31] ≈ n1neq13 , (7.41)

hence
n2

n3

≈ q12
q13

A32 + A31

A21

. (7.42)

Applying this to [OIII], Fig. 6.2 shows the n = 3 → 2 line has λ =
436.3 nm, whereas the n = 2 → 1 is a doublet consisting of λ = 500.7 and
495.9 nm. The intensity of a given line say n = 3 → 2 is I(3 → 2) ∝
n3A32hν32: the product of the rate at which the transition occurs, times the
energy of the photon. Therefore the ratio of emission line strengths

I(436.3)

I(500.7 + 495.9)
=

n3A32hν32

n2A21hν21

(7.43)

=
q13
q12

A32

A32 + A31

hν32

hν21

. (7.44)

Given the temperature dependence of the qs (Eq.7.33), the implies this line
ratio has a temperature dependence ∝ exp(−∆E13/kT )/ exp(−∆E12/kT ) ∝
exp(−∆E23/kT ). The value of this line ratio is an important temperature
diagnostic at the low densities typically encountered in the ISM. Note that
importantly the ratio is independent of the Oxygen abundance.

7.3 Exercises

1. Demonstrate that Eq. (7.2) indeed solves Eq. (7.1).
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2. Solve equation (7.16). Assume λ = 0 corresponds to x = 1/2, the
location in the nebula where half the gas is ionised. Compute the level
of ionisation at the location where λ = 10. Verify that the gas is
indeed mostly neutral there, and hence that the transition from mostly
ionised to mostly neutral occurs over a distance small compared to the
Strömgren radius. [Hint: see Dyson & Williams p. 71]
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Chapter 8

Appendix

8.1 Black body radiation

The intensity for a Black Body of temperature T depends on frequency as

Bν(T ) =
2hν3/c2

exp(hν/kT )− 1
. (8.1)

8.2 Maxwell distribution

The fraction of particles with velocity v in a Maxwellian distribution at
temperature T is

f(v) = 4π
( m

2πkT

)3/2

v2 exp(−mv2/2kT ) . (8.2)

8.3 Detailed balance

Consider a reaction
A+B → C +D (8.3)

and its inverse
C +D → A+B . (8.4)

In a system in equilibrium these reactions occur at the same rate. Since
the photon distribution as well a the thermal distributions are known in
equilibrium (Black Body and Maxwell distributions, respectively), we should
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be able to compute how the reaction rates for each of the above depends on
frequency of the radiation and velocity of the colliding particles. Since these
dependencies are characteristic of the particles A · · ·D, the actual relations
themselves do no require equilibrium. Such detailed balance considerations
are hence a powerful tool to relate rate coefficients.

8.4 Boltzmann distribution

(Rybicky & Lightman §9.5)
Consider a system which can be in a variety of states, i = 1, · · · , N , for
example the energy levels n in a hydrogen atom. The Boltzmann distribution
characterises the fraction of particles in a given state,

ni

n
=
gi exp(−Ei/kT )

Z
, (8.5)

where gi is the statistical weight of state of state i (e.g. gi = 2
∑n−1

0 (2l +
1) = 2n2 for the hydrogen atom), T the temperature, and Ei the energy
above the ground state n = 1. Since

∑
ni = n, the partition function

Z =
∑

i gi exp(−Ei/kT ).

8.5 Saha equation

(Rybicky & Lightman §9.5)
The Boltzmann equation applied to a thermal gas of ions and neutrals gives
for the fraction of ions of which the free electron has a given velocity v,
dn+

0 (v) compared to neutrals n0

dn+
0

n0

=
g

g0

exp(−χI +mv2/2

kT
) , (8.6)

where χ is the ionisation potential, g0 is the statistical weight of the neutrals,
and g = g+

0 ge the product of the statistical weights of ions and electrons.

Treating the electrons as free particles in a box with volume V = LxLyLz,
the allowed quantum numbers in say the x-direction follows from requiring
there to be an integer number of de Broglie wavelengths in Lx: nxλx =
nx(2π/kx) = LX , hence nx = Lx px/h in terms of the electron’s x momentum
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px. Taking into account the two possible spin states, the total number of
states in 3D is then N = 2nxnynz = 2(LxLyLz)d

3p/h3. The total number
of electrons in V is Ne = ne V in terms of the electron number density ne.
Hence the density of states is ge = N/Ne = 2d3p/ne h

3.

Inserting this in the Boltzmann equation yields

dn+
0

n0

=
g+
0

g0

8πm3
e

ne h3
exp(−χI +mv2/2

kT
) v2 dv , (8.7)

and integrated over all v it yields the Saha equation for the ratio of ionised
over neutrals:

n+
0 ne

n0

=
2g+

0

n0

(
2πmekT

h2

)3/2

exp(− χI

kT
) . (8.8)

8.6 Einstein relations

Rybicky & Lightman, §1.6
Consider a two-level atom. Absorption of a photon may cause an excitation
1 → 2, and de-excitation may occur through spontaneous and induced emis-
sion. These processes are described by the Einstein relations. Denoting the
number density of excited atoms by n2 and ground state atoms by n1, the
rate equation is

dn2

dt
= B12Jν , n1 − A21 n2 −B21 Jν n2 , (8.9)

which describe absorption, spontaneous emission, and stimulated emission,
respectively, in the presence of a radiation field with mean intensity Jν .

When the radiation field is that of a Black Body, Jν = Bν , the system
will get into an equilibrium with dn2/dt = 0. The ratio n2/n1 is then given
by the Boltzmann factor,

n1

n2

=
g1

g2

exp(−hν12/kT ) , (8.10)

where gi denotes the statistical weight of state i. Combing this with the
expression of Bν(T ) for a Black Body yields the following ‘Einstein relations’
between the rate coefficients:

69



g1B12 = g2B21 (8.11)

A21 = B21
2hν3

12

c2
. (8.12)

These atomic relations are always valid, not just in equilibrium.

8.7 Solution to the exercises

• Chapter 1

1. Absorption with given optical depth τ reduces the flux from Ie to
Io, where Io/Ie = exp(−τ); hence the change in apparent magni-
tude ∆m = −2.5 log10(Io/Ie) = −2.5 log10 (exp(−τ)) ≈ 1.086 τ

2. The optical depth after traversing a distance R due the grains is
τ = nd (πr2

d)R. Consider a small volume V , which contains a
mass Mg of gas, and Md of dust. The dust-to-gas ratio within this
volume

ψ ≡ Md

Mg

=
ndmd V

mH nH V
=

ndmd

mH nH

, (8.13)

hence the dust number density is nd = ψ (nH mH/md). Combining
these equations yields

τ = ψ
nH mh

md

(πr2
d)R . (8.14)

The mass md of a single dust grain is md = (4π/3) ρd r
3
d. Substi-

tuting the numbers gives τ = [0.04, 0.4] for nH = [102, 103] cm−3.

3. Assume Mg = 1014M� and R = 2 Mpc for the cluster’s gas mass,
and radius. For uniform density (and assuming pure hydrogen gas,
fully ionised), the electron density ne ≈ 10−4 cm−3. The Thomson
optical depth to the centre is then τ = ne σT R ≈ 5× 10−4, where
σT is the Thomson cross section.

4. The Thomson optical depth is τ = 2 × 10−6 using the equation
above with the new numbers. The dust density assuming the
parameters from Exercise 2 is nd ≈ 10−13 cm−3. The dust optical
depth is then τd = nd (πr2)R = 4× 10−4.
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5. The infinitesimal optical depth due to Thomson scattering over a
physical distance dl is dτ = ne(a)σT dl, where the physical elec-
tron density at expansion factor a depends on the value now at
a = 1 as ne(a) = ne(a = 1)a−3. In an expanding Universe, the
relation between dl and da follows from the Hubble law:

dl = c dt = c
dt

da
da =

c da

aH(a)
, (8.15)

and the Hubble constant at expansion factor a in an Einstein-de
Sitter (Ωm = 1) Universe is

H(a) = H0 a
−3/2 , (8.16)

where H0 ≡ H(a = 1). Combining the above yields

τ =

∫ 1

ar

σT c ne(a = 1)

H0

a−3 da

a a−3/2

=
2

3

σT c ne(a = 1)

H0

[
a−3/2

r − 1
]

= 0.04 . (8.17)

The numerical value assumes a Hubble constant h = 0.72, a
baryon fraction Ωb = 0.04 and neglects helium.

• Chapter 3

1. Solution see exercise 8.3 in R& L.

• Chapter 4

• Chapter 5

1. Ionisations are due to photons and collisions, so the ionisation rate
is

dnHII

dt
= ΓnHI + Γe nHI ne , (8.18)

whereas the recombination rate is

dnHI

dt
= αnHII ne . (8.19)
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Define the ionised fraction (note difference from original question)
x = nHII/n, with n = nHI + nHII and taking into account that
ne = nHII for a pure hydrogen gas, then the equilibrium x is the
solution to the quadratic equation

(α+ Γe)nx
2 + (Γ− Γen)x− Γ = 0 . (8.20)

At low density, Γ � Γen, x ≈ 1 − (α + Γe)n/Γ, whereas at high
density, x ≈ Γe/(α + Γe) if collisional ionisations are important,
and x ≈ (Γ/αn)1/2 if they are not.

2. The evolution of the neutral density due to recombinations is

dnHI

dt
= αnHII ne , (8.21)

or in terms of x ≡ nHII/n = ne/n, 1− x = nHI/n

d

dt
(1− x) = αx2 n . (8.22)

Defining the dimensionless time τ ≡ t/(αn), this becomes

d

dτ
(1− x) = x2 , (8.23)

which has the solution

x =
1

1 + τ
, (8.24)

which has the correct initial condition x = 1 at t = 0. For t =
tr = 1/(αn), τ = 1, and the ionised fraction is x = 1/2, as is the
neutral fraction.

3. The formation rate is

dn(H2)

dt
=

1

2
ε (πa2)nd nH vH , (8.25)

where ε is the dimensionless sticking coefficient of Hydrogen atoms
on a grain, (πa2) is the geometric cross section of a grain (dimen-
sions of a surface area), nd and nH are the number densities of
grains and Hydrogen atoms, and vH is mean relative velocity of
grains and atoms. The factor 1/2 arises since two hydrogen atoms
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need to be adsorbed for the reaction to molecular hydrogen to
take place. The destruction rate is

dn(H2)

dt
= −n(H2)

∫ ∞

νth

4πJ(ν)

hν
σ(ν) dν ,

≡ n(H2) Γ , (8.26)

where n(H2) is the number density of molecular hydrogen, J(ν)
is the mean intensity, [4πJ(ν)/hν] = cm−2 s−1 Hz−1, σ(ν) is the
cross section for photo-destruction of molecular hydrogen due to
photons with frequency ν (units of area), and ν is the frequency.
The integral starts at the minimum frequency νth where a photon
can destroy molecular hydrogen. In equilibrium the rates balance,
and with x = n(H2)/n, where n ≡ n(H2) + nH, the equilibrium
molecular fraction x is

x =
1

1 + Γ/k nd

, (8.27)

where the rate constant k ≡ (1/2)ε (πa2)nd vH with dimension
cm−3 s−1.

• Chapter 6

1. See R&L, exercise 10.6

2. C, O and Si have 6, 8 and 14 protons, respectively. Therefore
CIV=C3+ and OVI=O5+ have both 3 electrons, and their ground
state is 1s22s1; whereas SiIV=Si3+ has 11 electrons, hence its
ground state is 1s22s22p63s1. Neglecting filled shells, their va-
lence electrons comprise a single s electron, similar to the Alkali
metals, Na, K, Rb, etc. The doublet structure has the same ori-
gin as that of the famous ’Sodium D-lines’. The ground state
has l = 0, s = 1/2 and hence the term 2S1/2, the excited p-state
has l = 1 and s = 1/2 hence there are two possibilities, 2P1/2

and 2P3/2. Lande’s rule yields that the 2P1/2 is more bound than
the 2P3/2 state, so the energy levels from most to least bound are
2S1/2,

2P1/2 and 2P3/2. Transitions from the excited P states to the
ground S state have ∆m = 0 ,±1 and ∆l = 1 so are dipole allowed.
The degeneracy of the P states, 2J + 1, are 2 for 2P1/2 and 4 for
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2P3/2, ratio 1:2, hence the higher energy transition 2P3/2 → 2S1/2

is twice as strong as the lower energy component of the doublet,
2P1/2 → 2S1/2.

• Chapter 7

1. Let τ ≡ t/tr, then

dR

dτ
=

1

3
Rs(1− exp(−τ))−2/3 exp(−τ)

=
1

3
Rs (1− exp(−τ))−2/3 − 1

3
Rs (1− exp(−τ))1/3

=
R3

s

3R2
− R

3
. (8.28)

Comparing to Eq. (7.1),

dR

dt
=

Ṅγ

4πR2αn2
− R

3
, (8.29)

shows that these are the same, provided

R3
s =

Ṅγ

(4π/3)αn2
, (8.30)

which is indeed the expression for the Strömgren radius.

2. This exercise is solved in Dyson & Williams on p. 71
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Commonly used symbols and
results

Flux F , [F ]= erg s−1 cm−2, [Fν ] = erg s−1 cm−2 Hz−1

Intensity I, [Iν ] = erg s−1 cm−2 ster−1 Hz−1

Mean intensity Jν = 1
4π

∫
Iν dΩ

Emission coefficient jν defines the energy produced per unit volume, dEν =
jν dV dΩ dt dν , [jν ]=erg cm−3 ster−1 s−1 Hz−1

Absorption coefficient αν and optical depth τν , dIν = −αν Iν ds = −Iν dτν

Optical depth due to solid spheres, dτν = Q(ν)n (π r2) ds, with Q(ν) the
frequency-dependent extinction efficiency

Plasma frequency ω2
p ≡ 4πn e2/m and plasma dispersion relation c2k2 =

ω2 − ω2
p

Metallicity Z = Mz/Mg

General collisional reaction rate for A+B→ C: d
dt
nC = σ nA nB 〈vAB〉 ≡

k nA nB.

Particular case of photo-ionisation: d
dt
nHII = nHI

∫∞
νth

σ(ν) 4πJ(ν)
hν

dν ≡ nHI Γ.

Recombination: d
dt
nHI = αnHII ne
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Absorption by grains: αν = dτν

ds
= nd (πa2)Qν

Associated extinction Aν = (2.5 log e) τν

Kirchoff’s law applied to dust with temperature Td: jν = αν Bν(Td)

Notation for terms: 2S+1LJ

Hund’s rules:

• terms with larger spin S tend to lie lower in energy

• for a configuration with given S, terms with larger L tend to lie lower
in energy

Selection rules for dipole radiation: ∆l = ±1, ∆m = 0,±1, ∆s = 0

Photo-Ionisation equilibrium: nHIΓ = αnHIIne

Case B recombination rate αB =
∑∞

n=2 αn = αA − α1.

Photo-heating rate H = nHI

∫∞
νth

4πJν

hν
(hν − hνth)σν dν

Recombination cooling rate L = αB nHII ne η kT with η ≈ 1

Line cooling due to collisionally excited lines: L = nen1q12∆E12 with q12(T ) ∝
T−1/2 exp(−∆E12/kT )
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